

Model predictive control python toolbox

[image: Documentation Status]
 [https://www.do-mpc.com][image: Build Status]
 [https://app.travis-ci.com/do-mpc/do-mpc][image: _images/do-mpc1.svg]
 [https://badge.fury.io/py/do-mpc]do-mpc is a comprehensive open-source toolbox for robust model predictive control (MPC)
and moving horizon estimation (MHE).
do-mpc enables the efficient formulation and solution of control and estimation problems for nonlinear systems,
including tools to deal with uncertainty and time discretization.
The modular structure of do-mpc contains simulation, estimation and control components
that can be easily extended and combined to fit many different applications.

In summary, do-mpc offers the following features:

	nonlinear and economic model predictive control

	support for differential algebraic equations (DAE)

	time discretization with orthogonal collocation on finite elements

	robust multi-stage model predictive control

	moving horizon state and parameter estimation

	modular design that can be easily extended

The do-mpc software is Python based and works therefore on any OS with a Python 3.x distribution.
do-mpc has been developed by Sergio Lucia and Alexandru Tatulea at the DYN chair of the TU Dortmund lead by Sebastian Engell.
The development is continued at the Laboratory of Process Automation Systems [https://pas.bci.tu-dortmund.de] (PAS) of the TU Dortmund by Felix Fiedler and Sergio Lucia.

News

The first do-mpc developer con­fe­rence was hosted from 13.09.-15.09.2021 at TU Dort­mund.
For everyone who missed the event, we are happy to share the recording below:

 Getting started: MPC

Getting started: MPC

In this Jupyter Notebook we illustrate the core functionalities of do-mpc.

Open an interactive online Jupyter Notebook with this content on Binder:

[image: Binder] [https://mybinder.org/v2/gh/do-mpc/do-mpc/master?filepath=%2Fdocumentation%2Fsource%2Fgetting_started.ipynb]

We start by importing the required modules, most notably do_mpc.

[1]:

import numpy as np

Add do_mpc to path. This is not necessary if it was installed via pip.
import sys
sys.path.append('../../')

Import do_mpc package:
import do_mpc

One of the essential paradigms of do-mpc is a modular architecture, where individual building bricks can be used independently our jointly, depending on the application.

In the following we will present the configuration, setup and connection between these blocks, starting with the model.

Example system

First, we introduce a simple system for which we setup do-mpc. We want to control a triple mass spring system as depicted below: [image: triplemassschematic]

Three rotating discs are connected via springs and we denote their angles as \(\phi_1, \phi_2, \phi_3\). The two outermost discs are each connected to a stepper motor with additional springs. The stepper motor angles (\(\phi_{m,1}\) and \(\phi_{m,2}\) are used as inputs to the system. Relevant parameters of the system are the inertia \(\Theta\) of the three discs, the spring constants \(c\) as well as the damping factors \(d\).

The second degree ODE of this system can be written as follows:

\begin{align}
\Theta_1 \ddot{\phi}_1 &= -c_1 \left(\phi_1 - \phi_{m,1} \right) -c_2 \left(\phi_1 - \phi_2 \right)- d_1 \dot{\phi}_1\\
\Theta_2 \ddot{\phi}_2 &= -c_2 \left(\phi_2 - \phi_{1} \right) -c_3 \left(\phi_2 - \phi_3 \right)- d_2 \dot{\phi}_2\\
\Theta_3 \ddot{\phi}_3 &= -c_3 \left(\phi_3 - \phi_2 \right) -c_4 \left(\phi_3 - \phi_{m,2} \right)- d_3 \dot{\phi}_3
\end{align}
The uncontrolled system, starting from a non-zero initial state will osciallate for an extended period of time, as shown below:

[image: SegmentLocal1]

Later, we want to be able to use the motors efficiently to bring the oscillating masses to a rest. It will look something like this:

[image: SegmentLocal2]

Creating the model

As indicated above, the model block is essential for the application of do-mpc. In mathmatical terms the model is defined either as a continuous ordinary differential equation (ODE), a differential algebraic equation (DAE) or a discrete equation).

In the case of an DAE/ODE we write:

\begin{align}
\frac{\partial x}{\partial t} &= f(x,u,z,p)\\
0 &= g(x,u,z,p)\\
y &= h(x,u,z,p)
\end{align}
We denote \(x\in \mathbb{R}^{n_x}\) as the states, \(u \in \mathbb{R}^{n_u}\) as the inputs, \(z\in \mathbb{R}^{n_z}\) the algebraic states and \(p \in \mathbb{R}^{n_p}\) as parameters.

We reformulate the second order ODEs above as the following first order ODEs, be introducing the following states:

\begin{align}
x_1 &= \phi_1\\
x_2 &= \phi_2\\
x_3 &= \phi_3\\
x_4 &= \dot{\phi}_1\\
x_5 &= \dot{\phi}_2\\
x_6 &= \dot{\phi}_3\\
\end{align}
and derive the right-hand-side function \(f(x,u,z,p)\) as:

\begin{align}
\dot{x}_1 &= x_4\\
\dot{x}_2 &= x_5\\
\dot{x}_3 &= x_6\\
\dot{x}_4 &= -\frac{c_1}{\Theta_1} \left(x_1 - u_1 \right) -\frac{c_2}{\Theta_1} \left(x1 - x_2 \right)- \frac{d_1}{\Theta_1} x_4\\
\dot{x}_5 &= -\frac{c_2}{\Theta_2} \left(x_2 - x_1 \right) -\frac{c_3}{\Theta_2} \left(x_2 - x_3 \right)- \frac{d_2}{\Theta_2} x_5\\
\dot{x}_6 &= -\frac{c_3}{\Theta_3} \left(x_3 - x_2 \right) -\frac{c_4}{\Theta_3} \left(x_4 - u_2 \right)- \frac{d_3}{\Theta_3} x_6\\
\end{align}
With this theoretical background we can start configuring the do-mpc model object.

First, we need to decide on the model type. For the given example, we are working with a continuous model.

[2]:

model_type = 'continuous' # either 'discrete' or 'continuous'
model = do_mpc.model.Model(model_type)

Model variables

The next step is to define the model variables. It is important to define the variable type, name and optionally shape (default is scalar variable). The following types are available:

	Long name

	short name

	Remark

	states

	_x

	Required

	inputs

	_u

	Required

	algebraic

	_z

	Optional

	parameter

	_p

	Optional

	timevarying_parameter

	_tvp

	Optional

[3]:

phi_1 = model.set_variable(var_type='_x', var_name='phi_1', shape=(1,1))
phi_2 = model.set_variable(var_type='_x', var_name='phi_2', shape=(1,1))
phi_3 = model.set_variable(var_type='_x', var_name='phi_3', shape=(1,1))
Variables can also be vectors:
dphi = model.set_variable(var_type='_x', var_name='dphi', shape=(3,1))
Two states for the desired (set) motor position:
phi_m_1_set = model.set_variable(var_type='_u', var_name='phi_m_1_set')
phi_m_2_set = model.set_variable(var_type='_u', var_name='phi_m_2_set')
Two additional states for the true motor position:
phi_1_m = model.set_variable(var_type='_x', var_name='phi_1_m', shape=(1,1))
phi_2_m = model.set_variable(var_type='_x', var_name='phi_2_m', shape=(1,1))

Note that model.set_variable() returns the symbolic variable:

[4]:

print('phi_1={}, with phi_1.shape={}'.format(phi_1, phi_1.shape))
print('dphi={}, with dphi.shape={}'.format(dphi, dphi.shape))

phi_1=phi_1, with phi_1.shape=(1, 1)
dphi=[dphi_0, dphi_1, dphi_2], with dphi.shape=(3, 1)

Query variables

If at any time you need to obtain the model variables, e.g. if you create the model in a different file than additional do-mpc modules, you might need to retrieve the defined variables. do-mpc facilitates this process with the Model properties x, u, z, p, tvp, y and aux:

[5]:

model.x

[5]:

<casadi.tools.structure3.ssymStruct at 0x7fa718a27d30>

The properties itself a structured symbolic variables, which hold the user-defined variables. These can be accessed with indices:

[6]:

model.x['phi_1']

[6]:

SX(phi_1)

Note that this is identical to the output of model.set_variable from above:

[7]:

bool(model.x['phi_1'] == phi_1)

[7]:

True

Further indices are possible in the case of variables with multiple elements:

[8]:

model.x['dphi',0]

[8]:

SX(dphi_0)

Note that you can use the following methods:

	.keys()

	.labels()

to get more information from the symbolic structures:

[9]:

model.x.keys()

[9]:

['phi_1', 'phi_2', 'phi_3', 'dphi', 'phi_1_m', 'phi_2_m']

[10]:

model.x.labels()

[10]:

['[phi_1,0]',
 '[phi_2,0]',
 '[phi_3,0]',
 '[dphi,0]',
 '[dphi,1]',
 '[dphi,2]',
 '[phi_1_m,0]',
 '[phi_2_m,0]']

Model parameters

Next we define parameters. Known values can and should be hardcoded but with robust MPC in mind, we define uncertain parameters explictly. We assume that the inertia is such an uncertain parameter and hardcode the spring constant and friction coefficient.

[11]:

As shown in the table above, we can use Long names or short names for the variable type.
Theta_1 = model.set_variable('parameter', 'Theta_1')
Theta_2 = model.set_variable('parameter', 'Theta_2')
Theta_3 = model.set_variable('parameter', 'Theta_3')

c = np.array([2.697, 2.66, 3.05, 2.86])*1e-3
d = np.array([6.78, 8.01, 8.82])*1e-5

Right-hand-side equation

Finally, we set the right-hand-side of the model by calling model.set_rhs(var_name, expr) with the var_name from the state variables defined above and an expression in terms of \(x, u, z, p\).

[12]:

model.set_rhs('phi_1', dphi[0])
model.set_rhs('phi_2', dphi[1])
model.set_rhs('phi_3', dphi[2])

For the vector valued state dphi we need to concatenate symbolic expressions. We import the symbolic library CasADi:

[13]:

from casadi import *

[14]:

dphi_next = vertcat(
 -c[0]/Theta_1*(phi_1-phi_1_m)-c[1]/Theta_1*(phi_1-phi_2)-d[0]/Theta_1*dphi[0],
 -c[1]/Theta_2*(phi_2-phi_1)-c[2]/Theta_2*(phi_2-phi_3)-d[1]/Theta_2*dphi[1],
 -c[2]/Theta_3*(phi_3-phi_2)-c[3]/Theta_3*(phi_3-phi_2_m)-d[2]/Theta_3*dphi[2],
)

model.set_rhs('dphi', dphi_next)

[15]:

tau = 1e-2
model.set_rhs('phi_1_m', 1/tau*(phi_m_1_set - phi_1_m))
model.set_rhs('phi_2_m', 1/tau*(phi_m_2_set - phi_2_m))

The model setup is completed by calling model.setup():

[16]:

model.setup()

After calling model.setup() we cannot define further variables etc.

Configuring the MPC controller

With the configured and setup model we can now create the optimizer for model predictive control (MPC). We start by creating the object (with the model as the only input)

[17]:

mpc = do_mpc.controller.MPC(model)

Optimizer parameters

Next, we need to parametrize the optimizer. Please see the API documentation for optimizer.set_param() for a full description of available parameters and their meaning. Many parameters already have suggested default values. Most importantly, we need to set n_horizon and t_step. We also choose n_robust=1 for this example, which would default to 0.

Note that by default the continuous system is discretized with collocation.

[18]:

setup_mpc = {
 'n_horizon': 20,
 't_step': 0.1,
 'n_robust': 1,
 'store_full_solution': True,
}
mpc.set_param(**setup_mpc)

Objective function

The MPC formulation is at its core an optimization problem for which we need to define an objective function:

\[C = \sum_{k=0}^{n-1}\left(\underbrace{l(x_k,u_k,z_k,p)}_{\text{lagrange term}}
+ \underbrace{\Delta u_k^T R \Delta u_k}_{\text{r-term}}\right)
+ \underbrace{m(x_n)}_{\text{meyer term}}\]

We need to define the meyer term (mterm) and lagrange term (lterm). For the given example we set:

\[\begin{split}l(x_k,u_k,z_k,p) = \phi_1^2+\phi_2^2+\phi_3^2\\
m(x_n) = \phi_1^2+\phi_2^2+\phi_3^2\end{split}\]

[19]:

mterm = phi_1**2 + phi_2**2 + phi_3**2
lterm = phi_1**2 + phi_2**2 + phi_3**2

mpc.set_objective(mterm=mterm, lterm=lterm)

Part of the objective function is also the penality for the control inputs. This penalty can often be used to smoothen the obtained optimal solution and is an important tuning parameter. We add a quadratic penalty on changes:

\[\Delta u_k = u_k - u_{k-1}\]

and automatically supply the solver with the previous solution of \(u_{k-1}\) for \(\Delta u_0\).

The user can set the tuning factor for these quadratic terms like this:

[20]:

mpc.set_rterm(
 phi_m_1_set=1e-2,
 phi_m_2_set=1e-2
)

where the keyword arguments refer to the previously defined input names. Note that in the notation above (\(\Delta u_k^T R \Delta u_k\)), this results in setting the diagonal elements of \(R\).

Constraints

It is an important feature of MPC to be able to set constraints on inputs and states. In do-mpc these constraints are set like this:

[21]:

Lower bounds on states:
mpc.bounds['lower','_x', 'phi_1'] = -2*np.pi
mpc.bounds['lower','_x', 'phi_2'] = -2*np.pi
mpc.bounds['lower','_x', 'phi_3'] = -2*np.pi
Upper bounds on states
mpc.bounds['upper','_x', 'phi_1'] = 2*np.pi
mpc.bounds['upper','_x', 'phi_2'] = 2*np.pi
mpc.bounds['upper','_x', 'phi_3'] = 2*np.pi

Lower bounds on inputs:
mpc.bounds['lower','_u', 'phi_m_1_set'] = -2*np.pi
mpc.bounds['lower','_u', 'phi_m_2_set'] = -2*np.pi
Lower bounds on inputs:
mpc.bounds['upper','_u', 'phi_m_1_set'] = 2*np.pi
mpc.bounds['upper','_u', 'phi_m_2_set'] = 2*np.pi

Scaling

Scaling is an important feature if the OCP is poorly conditioned, e.g. different states have significantly different magnitudes. In that case the unscaled problem might not lead to a (desired) solution. Scaling factors can be introduced for all states, inputs and algebraic variables and the objective is to scale them to roughly the same order of magnitude. For the given problem, this is not necessary but we briefly show the syntax (note that this step can also be skipped).

[22]:

mpc.scaling['_x', 'phi_1'] = 2
mpc.scaling['_x', 'phi_2'] = 2
mpc.scaling['_x', 'phi_3'] = 2

Uncertain Parameters

An important feature of do-mpc is scenario based robust MPC. Instead of predicting and controlling a single future trajectory, we investigate multiple possible trajectories depending on different uncertain parameters. These parameters were previously defined in the model (the mass inertia). Now we must provide the optimizer with different possible scenarios.

This can be done in the following way:

[23]:

inertia_mass_1 = 2.25*1e-4*np.array([1., 0.9, 1.1])
inertia_mass_2 = 2.25*1e-4*np.array([1., 0.9, 1.1])
inertia_mass_3 = 2.25*1e-4*np.array([1.])

mpc.set_uncertainty_values(
 Theta_1 = inertia_mass_1,
 Theta_2 = inertia_mass_2,
 Theta_3 = inertia_mass_3
)

We provide a number of keyword arguments to the method optimizer.set_uncertain_parameter(). For each referenced parameter the value is a numpy.ndarray with a selection of possible values. The first value is the nominal case, where further values will lead to an increasing number of scenarios. Since we investigate each combination of possible parameters, the number of scenarios is growing rapidly. For our example, we are therefore only treating the inertia of mass 1 and 2 as uncertain and
supply only one possible value for the mass of inertia 3.

Setup

The last step of configuring the optimizer is to call optimizer.setup, which finalizes the setup and creates the optimization problem. Only now can we use the optimizer to obtain the control input.

[24]:

mpc.setup()

Configuring the Simulator

In many cases a developed control approach is first tested on a simulated system. do-mpc responds to this need with the do_mpc.simulator class. The simulator uses state-of-the-art DAE solvers, e.g. Sundials CVODE [https://computing.llnl.gov/projects/sundials/cvode] to solve the DAE equations defined in the supplied do_mpc.model. This will often be the same model as defined for the optimizer but it is also possible to use a more complex model of the same system.

In this section we demonstrate how to setup the simulator class for the given example. We initilize the class with the previously defined model:

[25]:

simulator = do_mpc.simulator.Simulator(model)

Simulator parameters

Next, we need to parametrize the simulator. Please see the API documentation for simulator.set_param() for a full description of available parameters and their meaning. Many parameters already have suggested default values. Most importantly, we need to set t_step. We choose the same value as for the optimizer.

[26]:

Instead of supplying a dict with the splat operator (**), as with the optimizer.set_param(),
we can also use keywords (and call the method multiple times, if necessary):
simulator.set_param(t_step = 0.1)

Uncertain parameters

In the model we have defined the inertia of the masses as parameters, for which we have chosen multiple scenarios in the optimizer. The simulator is now parametrized to simulate with the “true” values at each timestep. In the most general case, these values can change, which is why we need to supply a function that can be evaluted at each time to obtain the current values. do-mpc requires this function to have a specific return structure which we obtain first by calling:

[27]:

p_template = simulator.get_p_template()

This object is a CasADi structure:

[28]:

type(p_template)

[28]:

casadi.tools.structure3.DMStruct

which can be indexed with the following keys:

[29]:

p_template.keys()

[29]:

['default', 'Theta_1', 'Theta_2', 'Theta_3']

We need to now write a function which returns this structure with the desired numerical values. For our simple case:

[30]:

def p_fun(t_now):
 p_template['Theta_1'] = 2.25e-4
 p_template['Theta_2'] = 2.25e-4
 p_template['Theta_3'] = 2.25e-4
 return p_template

This function is now supplied to the simulator in the following way:

[31]:

simulator.set_p_fun(p_fun)

Setup

Similarly to the optimizer we need to call simulator.setup() to finalize the setup of the simulator.

[32]:

simulator.setup()

Creating the control loop

In theory, we could now also create an estimator but for this concise example we just assume direct state-feedback. This means we are now ready to setup and run the control loop. The control loop consists of running the optimizer with the current state (\(x_0\)) to obtain the current control input (\(u_0\)) and then running the simulator with the current control input (\(u_0\)) to obtain the next state.

As discussed before, we setup a controller for regulating a triple-mass-spring system. To show some interesting control action we choose an arbitrary initial state \(x_0\neq 0\):

[33]:

x0 = np.pi*np.array([1, 1, -1.5, 1, -1, 1, 0, 0]).reshape(-1,1)

and use the x0 property to set the initial state.

[34]:

simulator.x0 = x0
mpc.x0 = x0

While we are able to set just a regular numpy array, this populates the state structure which was inherited from the model:

[35]:

mpc.x0

[35]:

<casadi.tools.structure3.DMStruct at 0x7fa71b5ee390>

We can thus easily obtain the value of particular states by calling:

[36]:

mpc.x0['phi_1']

[36]:

DM(3.14159)

Note that the properties x0 (as well as u0, z0 and t0) always display the values of the current variables in the class.

To set the initial guess of the MPC optimization problem we call:

[37]:

mpc.set_initial_guess()

The chosen initial guess is based on x0, z0 and u0 which are set for each element of the MPC sequence.

Setting up the Graphic

To investigate the controller performance AND the MPC predictions, we are using the do-mpc graphics module. This versatile tool allows us to conveniently configure a user-defined plot based on Matplotlib and visualize the results stored in the mpc.data, simulator.data (and if applicable estimator.data) objects.

We start by importing matplotlib:

[38]:

import matplotlib.pyplot as plt
import matplotlib as mpl
Customizing Matplotlib:
mpl.rcParams['font.size'] = 18
mpl.rcParams['lines.linewidth'] = 3
mpl.rcParams['axes.grid'] = True

And initializing the graphics module with the data object of interest. In this particular example, we want to visualize both the mpc.data as well as the simulator.data.

[39]:

mpc_graphics = do_mpc.graphics.Graphics(mpc.data)
sim_graphics = do_mpc.graphics.Graphics(simulator.data)

Next, we create a figure and obtain its axis object. Matplotlib offers multiple alternative ways to obtain an axis object, e.g. subplots [https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.subplots.html], subplot2grid [https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.subplot2grid.html], or simply gca [https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.gca.html]. We use subplots:

[40]:

%%capture
We just want to create the plot and not show it right now. This "inline magic" supresses the output.
fig, ax = plt.subplots(2, sharex=True, figsize=(16,9))
fig.align_ylabels()

Most important API element for setting up the graphics module is graphics.add_line, which mimics the API of model.add_variable, except that we also need to pass an axis.

We want to show both the simulator and MPC results on the same axis, which is why we configure both of them identically:

[41]:

%%capture
for g in [sim_graphics, mpc_graphics]:
 # Plot the angle positions (phi_1, phi_2, phi_2) on the first axis:
 g.add_line(var_type='_x', var_name='phi_1', axis=ax[0])
 g.add_line(var_type='_x', var_name='phi_2', axis=ax[0])
 g.add_line(var_type='_x', var_name='phi_3', axis=ax[0])

 # Plot the set motor positions (phi_m_1_set, phi_m_2_set) on the second axis:
 g.add_line(var_type='_u', var_name='phi_m_1_set', axis=ax[1])
 g.add_line(var_type='_u', var_name='phi_m_2_set', axis=ax[1])

ax[0].set_ylabel('angle position [rad]')
ax[1].set_ylabel('motor angle [rad]')
ax[1].set_xlabel('time [s]')

Running the simulator

We start investigating the do-mpc simulator and the graphics package by simulating the autonomous system without control inputs (\(u = 0\)). This can be done as follows:

[42]:

u0 = np.zeros((2,1))
for i in range(200):
 simulator.make_step(u0)

We can visualize the resulting trajectory with the pre-defined graphic:

[43]:

sim_graphics.plot_results()
Reset the limits on all axes in graphic to show the data.
sim_graphics.reset_axes()
Show the figure:
fig

[43]:

[image: _images/getting_started_98_0.png]

As desired, the motor angle (input) is constant at zero and the oscillating masses slowly come to a rest. Our control goal is to significantly shorten the time until the discs are stationary.

Remember the animation you saw above, of the uncontrolled system? This is where the data came from.

Running the optimizer

To obtain the current control input we call optimizer.make_step(x0) with the current state (\(x_0\)):

[44]:

u0 = mpc.make_step(x0)

**
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Eclipse Public License (EPL).
 For more information visit http://projects.coin-or.org/Ipopt
**

This is Ipopt version 3.12.3, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian...: 19448
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 1229

Total number of variables............................: 6408
 variables with only lower bounds: 0
 variables with lower and upper bounds: 2435
 variables with only upper bounds: 0
Total number of equality constraints.................: 5768
Total number of inequality constraints...............: 0
 inequality constraints with only lower bounds: 0
 inequality constraints with lower and upper bounds: 0
 inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 0 8.8086219e+02 1.65e+01 1.07e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
 1 2.8794996e+02 2.32e+00 1.68e+00 -1.0 1.38e+01 -4.0 2.82e-01 8.60e-01f 1
 2 2.0017562e+02 1.87e-14 3.95e+00 -1.0 3.56e+00 -4.5 1.96e-01 1.00e+00f 1
 3 1.6039802e+02 1.48e-14 3.82e-01 -1.0 3.43e+00 -5.0 5.14e-01 1.00e+00f 1
 4 1.3046012e+02 2.04e-14 7.36e-02 -1.0 2.94e+00 -5.4 7.75e-01 1.00e+00f 1
 5 1.1452477e+02 2.04e-14 1.94e-02 -1.7 2.62e+00 -5.9 8.44e-01 1.00e+00f 1
 6 1.1247422e+02 1.87e-14 7.23e-03 -2.5 9.17e-01 -6.4 8.27e-01 1.00e+00f 1
 7 1.1235000e+02 1.69e-14 4.88e-08 -2.5 3.56e-01 -6.9 1.00e+00 1.00e+00f 1
 8 1.1230585e+02 1.87e-14 8.91e-09 -3.8 1.95e-01 -7.3 1.00e+00 1.00e+00f 1
 9 1.1229857e+02 1.83e-14 8.02e-10 -5.7 5.26e-02 -7.8 1.00e+00 1.00e+00f 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 10 1.1229833e+02 1.51e-14 6.08e-09 -5.7 1.20e+00 -8.3 1.00e+00 1.00e+00f 1
 11 1.1229831e+02 1.69e-14 3.25e-13 -8.6 1.92e-04 -8.8 1.00e+00 1.00e+00f 1

Number of Iterations....: 11

 (scaled) (unscaled)
Objective...............: 1.1229831239969913e+02 1.1229831239969913e+02
Dual infeasibility......: 3.2479227640713759e-13 3.2479227640713759e-13
Constraint violation....: 1.6875389974302379e-14 1.6875389974302379e-14
Complementarity.........: 4.2481089749952700e-09 4.2481089749952700e-09
Overall NLP error.......: 4.2481089749952700e-09 4.2481089749952700e-09

Number of objective function evaluations = 12
Number of objective gradient evaluations = 12
Number of equality constraint evaluations = 12
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 12
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 11
Total CPU secs in IPOPT (w/o function evaluations) = 0.239
Total CPU secs in NLP function evaluations = 0.006

EXIT: Optimal Solution Found.
 S : t_proc (avg) t_wall (avg) n_eval
 nlp_f | 149.00us (12.42us) 145.00us (12.08us) 12
 nlp_g | 2.16ms (180.17us) 1.83ms (152.33us) 12
 nlp_grad | 377.00us (377.00us) 377.00us (377.00us) 1
 nlp_grad_f | 504.00us (38.77us) 525.00us (40.38us) 13
 nlp_hess_l | 138.00us (12.55us) 137.00us (12.45us) 11
 nlp_jac_g | 3.27ms (251.31us) 3.26ms (251.00us) 13
 total | 257.31ms (257.31ms) 256.06ms (256.06ms) 1

Note that we obtained the output from IPOPT regarding the given optimal control problem (OCP). Most importantly we obtained Optimal Solution Found.

We can also visualize the predicted trajectories with the configure graphics instance. First we clear the existing lines from the simulator by calling:

[45]:

sim_graphics.clear()

And finally, we can call plot_predictions to obtain:

[46]:

mpc_graphics.plot_predictions()
mpc_graphics.reset_axes()
Show the figure:
fig

[46]:

[image: _images/getting_started_105_0.png]

We are seeing the predicted trajectories for the states and the optimal control inputs. Note that we are seeing different scenarios for the configured uncertain inertia of the three masses.

We can also see that the solution is considering the defined upper and lower bounds. This is especially true for the inputs.

Changing the line appearance

Before we continue, we should probably improve the visualization a bit. We can easily obtain all line objects from the graphics module by using the result_lines and pred_lines properties:

[47]:

mpc_graphics.pred_lines

[47]:

<do_mpc.tools.structure.Structure at 0x7fa71b5ee860>

We obtain a structure that can be queried conveniently as follows:

[48]:

mpc_graphics.pred_lines['_x', 'phi_1']

[48]:

[<matplotlib.lines.Line2D at 0x7fa71c445828>,
 <matplotlib.lines.Line2D at 0x7fa71c6e7898>,
 <matplotlib.lines.Line2D at 0x7fa71c6e7978>,
 <matplotlib.lines.Line2D at 0x7fa71c7023c8>,
 <matplotlib.lines.Line2D at 0x7fa71c7022b0>,
 <matplotlib.lines.Line2D at 0x7fa71c702630>,
 <matplotlib.lines.Line2D at 0x7fa71c702978>,
 <matplotlib.lines.Line2D at 0x7fa71c702d30>,
 <matplotlib.lines.Line2D at 0x7fa71c702c88>]

We obtain all lines for our first state. To change the color we can simply:

[49]:

Change the color for the three states:
for line_i in mpc_graphics.pred_lines['_x', 'phi_1']: line_i.set_color('#1f77b4') # blue
for line_i in mpc_graphics.pred_lines['_x', 'phi_2']: line_i.set_color('#ff7f0e') # orange
for line_i in mpc_graphics.pred_lines['_x', 'phi_3']: line_i.set_color('#2ca02c') # green
Change the color for the two inputs:
for line_i in mpc_graphics.pred_lines['_u', 'phi_m_1_set']: line_i.set_color('#1f77b4')
for line_i in mpc_graphics.pred_lines['_u', 'phi_m_2_set']: line_i.set_color('#ff7f0e')

Make all predictions transparent:
for line_i in mpc_graphics.pred_lines.full: line_i.set_alpha(0.2)

Note that we can work in the same way with the result_lines property. For example, we can use it to create a legend:

[50]:

Get line objects (note sum of lists creates a concatenated list)
lines = sim_graphics.result_lines['_x', 'phi_1']+sim_graphics.result_lines['_x', 'phi_2']+sim_graphics.result_lines['_x', 'phi_3']

ax[0].legend(lines,'123',title='disc')

also set legend for second subplot:
lines = sim_graphics.result_lines['_u', 'phi_m_1_set']+sim_graphics.result_lines['_u', 'phi_m_2_set']
ax[1].legend(lines,'12',title='motor')

[50]:

<matplotlib.legend.Legend at 0x7fa71c712eb8>

Running the control loop

Finally, we are now able to run the control loop as discussed above. We obtain the input from the optimizer and then run the simulator.

To make sure we start fresh, we erase the history and set the initial state for the simulator:

[51]:

simulator.reset_history()
simulator.x0 = x0
mpc.reset_history()

This is the main-loop. We run 20 steps, whic is identical to the prediction horizon. Note that we use “capture” again, to supress the output from IPOPT.

It is usually suggested to display the output as it contains important information about the state of the solver.

[52]:

%%capture
for i in range(20):
 u0 = mpc.make_step(x0)
 x0 = simulator.make_step(u0)

We can now plot the previously shown prediction from time \(t=0\), as well as the closed-loop trajectory from the simulator:

[53]:

Plot predictions from t=0
mpc_graphics.plot_predictions(t_ind=0)
Plot results until current time
sim_graphics.plot_results()
sim_graphics.reset_axes()
fig

[53]:

[image: _images/getting_started_120_0.png]

The simulated trajectory with the nominal value of the parameters follows almost exactly the nominal open-loop predictions. The simulted trajectory is bounded from above and below by further uncertain scenarios.

Data processing

Saving and retrieving results

do-mpc results can be stored and retrieved with the methods save_results and load_results from the do_mpc.data module. We start by importing these methods:

[55]:

from do_mpc.data import save_results, load_results

The method save_results is passed a list of the do-mpc objects that we want to store. In our case, the optimizer and simulator are available and configured.

Note that by default results are stored in the subfolder results under the name results.pkl. Both can be changed and the folder is created if it doesn’t exist already.

[56]:

save_results([mpc, simulator])

We investigate the content of the newly created folder:

[57]:

!ls ./results/

results.pkl

Automatically, the save_results call will check if a file with the given name already exists. To avoid overwriting, the method prepends an index. If we save again, the folder contains:

[58]:

save_results([mpc, simulator])
!ls ./results/

001_results.pkl results.pkl

The pickled results can be loaded manually by writing:

with open(file_name, 'rb') as f:
 results = pickle.load(f)

or by calling load_results with the appropriate file_name (and path). load_results contains simply the code above for more convenience.

[59]:

results = load_results('./results/results.pkl')

The obtained results is a dictionary with the data objects from the passed do-mpc modules. Such that: results['optimizer'] and optimizer.data contain the same information (similarly for simulator and, if applicable, estimator).

Working with data objects

The do_mpc.data.Data objects also hold some very useful properties that you should know about. Most importantly, we can query them with indices, such as:

[60]:

results['mpc']

[60]:

<do_mpc.data.MPCData at 0x117c4df50>

[61]:

x = results['mpc']['_x']
x.shape

[61]:

(20, 8)

As expected, we have 20 elements (we ran the loop for 20 steps) and 8 states. Further indices allow to get selected states:

[62]:

phi_1 = results['mpc']['_x','phi_1']

phi_1.shape

[62]:

(20, 1)

For vector-valued states we can even query:

[63]:

dphi_1 = results['mpc']['_x','dphi', 0]

dphi_1.shape

[63]:

(20, 1)

Of course, we could also query inputs etc.

Furthermore, we can easily retrieve the predicted trajectories with the prediction method. The syntax is slightly different: The first argument is a tuple that mimics the indices shown above. The second index is the time instance. With the following call we obtain the prediction of phi_1 at time 0:

[64]:

phi_1_pred = results['mpc'].prediction(('_x','phi_1'), t_ind=0)

phi_1_pred.shape

[64]:

(1, 21, 9)

The first dimension shows that this state is a scalar, the second dimension shows the horizon and the third dimension refers to the nine uncertain scenarios that were investigated.

Animating results

Animating MPC results, to compare prediction and closed-loop trajectories, allows for a very meaningful investigation of the obtained results.

do-mpc significantly facilitates this process while working hand in hand with Matplotlib for full customizability. Obtaining publication ready animations is as easy as writing the following short blocks of code:

[66]:

from matplotlib.animation import FuncAnimation, FFMpegWriter, ImageMagickWriter

def update(t_ind):
 sim_graphics.plot_results(t_ind)
 mpc_graphics.plot_predictions(t_ind)
 mpc_graphics.reset_axes()

The graphics module can also be used without restrictions with loaded do-mpc data. This allows for convenient data post-processing, e.g. in a Jupyter Notebook. We simply would have to initiate the graphics module with the loaded results from above.

[69]:

anim = FuncAnimation(fig, update, frames=20, repeat=False)
gif_writer = ImageMagickWriter(fps=3)
anim.save('anim.gif', writer=gif_writer)

Below we showcase the resulting gif file (not in real-time): [image: SegmentLocal]

Thank you, for following through this short example on how to use do-mpc. We hope you find the tool and this documentation useful.

We suggest that you have a look at the API documentation for further details on the presented modules, methods and functions.

We also want to emphasize that we skipped over many details, further functions etc. in this introduction. Please have a look at our more complex examples to get a better impression of the possibilities with do-mpc.

 Getting started: MHE

Getting started: MHE

Open an interactive online Jupyter Notebook with this content on Binder:

[image: Binder] [https://mybinder.org/v2/gh/do-mpc/do-mpc/master?filepath=%2Fdocumentation%2Fsource%2Fmhe_example.ipynb]

In this Jupyter Notebook we illustrate application of the do-mpc moving horizon estimation module. Please follow first the general Getting Started guide, as we cover the sample example and skip over some previously explained details.

[1]:

import numpy as np
from casadi import *

Add do_mpc to path. This is not necessary if it was installed via pip.
import sys
sys.path.append('../../')

Import do_mpc package:
import do_mpc

Creating the model

First, we need to decide on the model type. For the given example, we are working with a continuous model.

[2]:

model_type = 'continuous' # either 'discrete' or 'continuous'
model = do_mpc.model.Model(model_type)

The model is based on the assumption that we have additive process and/or measurement noise:

\begin{align}
\dot{x}(t) &= f(x(t),u(t),z(t),p(t),p_{\text{tv}}(t))+w(t), \\
y(t) &= h(x(t),u(t),z(t),p(t),p_{\text{tv}}(t))+v(t),
\end{align}
we are free to chose, which states and which measurements experience additive noise.

Model variables

The next step is to define the model variables. It is important to define the variable type, name and optionally shape (default is scalar variable).

In contrast to the previous example, we now use vectors for all variables.

[3]:

phi = model.set_variable(var_type='_x', var_name='phi', shape=(3,1))
dphi = model.set_variable(var_type='_x', var_name='dphi', shape=(3,1))

Two states for the desired (set) motor position:
phi_m_set = model.set_variable(var_type='_u', var_name='phi_m_set', shape=(2,1))

Two additional states for the true motor position:
phi_m = model.set_variable(var_type='_x', var_name='phi_m', shape=(2,1))

Model measurements

This step is essential for the state estimation task: We must define a measurable output. Typically, this is a subset of states (or a transformation thereof) as well as the inputs.

Note that some MHE implementations consider inputs separately.

As mentionned above, we need to define for each measurement if additive noise is present. In our case we assume noisy state measurements (\(\phi\)) but perfect input measurements.

[4]:

State measurements
phi_meas = model.set_meas('phi_1_meas', phi, meas_noise=True)

Input measurements
phi_m_set_meas = model.set_meas('phi_m_set_meas', phi_m_set, meas_noise=False)

Model parameters

Next we define parameters. The MHE allows to estimate parameters as well as states. Note that not all parameters must be estimated (as shown in the MHE setup below). We can also hardcode parameters (such as the spring constants c).

[5]:

Theta_1 = model.set_variable('parameter', 'Theta_1')
Theta_2 = model.set_variable('parameter', 'Theta_2')
Theta_3 = model.set_variable('parameter', 'Theta_3')

c = np.array([2.697, 2.66, 3.05, 2.86])*1e-3
d = np.array([6.78, 8.01, 8.82])*1e-5

Right-hand-side equation

Finally, we set the right-hand-side of the model by calling model.set_rhs(var_name, expr) with the var_name from the state variables defined above and an expression in terms of \(x, u, z, p\).

Note that we can decide whether the inidividual states experience process noise. In this example we choose that the system model is perfect. This is the default setting, so we don’t need to pass this parameter explictly.

[6]:

model.set_rhs('phi', dphi)

dphi_next = vertcat(
 -c[0]/Theta_1*(phi[0]-phi_m[0])-c[1]/Theta_1*(phi[0]-phi[1])-d[0]/Theta_1*dphi[0],
 -c[1]/Theta_2*(phi[1]-phi[0])-c[2]/Theta_2*(phi[1]-phi[2])-d[1]/Theta_2*dphi[1],
 -c[2]/Theta_3*(phi[2]-phi[1])-c[3]/Theta_3*(phi[2]-phi_m[1])-d[2]/Theta_3*dphi[2],
)

model.set_rhs('dphi', dphi_next, process_noise = False)

tau = 1e-2
model.set_rhs('phi_m', 1/tau*(phi_m_set - phi_m))

The model setup is completed by calling model.setup():

[7]:

model.setup()

After calling model.setup() we cannot define further variables etc.

Configuring the moving horizon estimator

The first step of configuring the moving horizon estimator is to call the class with a list of all parameters to be estimated. An empty list (default value) means that no parameters are estimated. The list of estimated parameters must be a subset (or all) of the previously defined parameters.

Note

So why did we define Theta_2 and Theta_3 if we do not estimate them?

In many cases we will use the same model for (robust) control and MHE estimation. In that case it is possible to have some external parameters (e.g. weather prediction) that are uncertain but cannot be estimated.

[8]:

mhe = do_mpc.estimator.MHE(model, ['Theta_1'])

MHE parameters:

Next, we pass MHE parameters. Most importantly, we need to set the time step and the horizon. We also choose to obtain the measurement from the MHE data object. Alternatively, we are able to set a user defined measurement function that is called at each timestep and returns the N previous measurements for the estimation step.

[9]:

setup_mhe = {
 't_step': 0.1,
 'n_horizon': 10,
 'store_full_solution': True,
 'meas_from_data': True
}
mhe.set_param(**setup_mhe)

Objective function

The most important step of the configuration is to define the objective function for the MHE problem:

\begin{align}
\underset{
 \begin{array}{c}
 \mathbf{x}_{0:N+1}, \mathbf{u}_{0:N}, p,\\
 \mathbf{w}_{0:N}, \mathbf{v}_{0:N}
 \end{array}
 }{\mathrm{min}}
 &\frac{1}{2}\|x_0-\tilde{x}_0\|_{P_x}^2+\frac{1}{2}\|p-\tilde{p}\|_{P_p}^2
 +\sum_{k=0}^{N-1} \left(\frac{1}{2}\|v_k\|_{P_{v,k}}^2
 + \frac{1}{2}\|w_k\|_{P_{w,k}}^2\right),\\
 &\left.\begin{aligned}
 \mathrm{s.t.}\quad
 x_{k+1} &= f(x_k,u_k,z_k,p,p_{\text{tv},k})+ w_k,\\
 y_k &= h(x_k,u_k,z_k,p,p_{\text{tv},k}) + v_k, \\
 &g(x_k,u_k,z_k,p_k,p_{\text{tv},k}) \leq 0
 \end{aligned}\right\} k=0,\dots, N
\end{align}
We typically consider the formulation shown above, where the user has to pass the weighting matrices P_x, P_v, P_p and P_w. In our concrete example, we assume a perfect model without process noise and thus P_w is not required.

We set the objective function with the weighting matrices shown below:

[10]:

P_v = np.diag(np.array([1,1,1]))
P_x = np.eye(8)
P_p = 10*np.eye(1)

mhe.set_default_objective(P_x, P_v, P_p)

Fixed parameters

If the model contains parameters and if we estimate only a subset of these parameters, it is required to pass a function that returns the value of the remaining parameters at each time step.

Furthermore, this function must return a specific structure, which is first obtained by calling:

[11]:

p_template_mhe = mhe.get_p_template()

Using this structure, we then formulate the following function for the remaining (not estimated) parameters:

[12]:

def p_fun_mhe(t_now):
 p_template_mhe['Theta_2'] = 2.25e-4
 p_template_mhe['Theta_3'] = 2.25e-4
 return p_template_mhe

This function is finally passed to the mhe instance:

[13]:

mhe.set_p_fun(p_fun_mhe)

Bounds

The MHE implementation also supports bounds for states, inputs, parameters which can be set as shown below. For the given example, it is especially important to set realistic bounds on the estimated parameter. Otherwise the MHE solution is a poor fit.

[14]:

mhe.bounds['lower','_u', 'phi_m_set'] = -2*np.pi
mhe.bounds['upper','_u', 'phi_m_set'] = 2*np.pi

mhe.bounds['lower','_p_est', 'Theta_1'] = 1e-5
mhe.bounds['upper','_p_est', 'Theta_1'] = 1e-3

Setup

Similar to the controller, simulator and model, we finalize the MHE configuration by calling:

[15]:

mhe.setup()

Configuring the Simulator

In many cases, a developed control approach is first tested on a simulated system. do-mpc responds to this need with the do_mpc.simulator class. The simulator uses state-of-the-art DAE solvers, e.g. Sundials CVODE [https://computing.llnl.gov/projects/sundials/cvode] to solve the DAE equations defined in the supplied do_mpc.model. This will often be the same model as defined for the optimizer but it is also possible to use a more complex model of the same system.

In this section we demonstrate how to setup the simulator class for the given example. We initialize the class with the previously defined model:

[16]:

simulator = do_mpc.simulator.Simulator(model)

Simulator parameters

Next, we need to parametrize the simulator. Please see the API documentation for simulator.set_param() for a full description of available parameters and their meaning. Many parameters already have suggested default values. Most importantly, we need to set t_step. We choose the same value as for the optimizer.

[17]:

Instead of supplying a dict with the splat operator (**), as with the optimizer.set_param(),
we can also use keywords (and call the method multiple times, if necessary):
simulator.set_param(t_step = 0.1)

Parameters

In the model we have defined the inertia of the masses as parameters. The simulator is now parametrized to simulate using the “true” values at each timestep. In the most general case, these values can change, which is why we need to supply a function that can be evaluted at each time to obtain the current values. do-mpc requires this function to have a specific return structure which we obtain first by calling:

[18]:

p_template_sim = simulator.get_p_template()

We need to define a function which returns this structure with the desired numerical values. For our simple case:

[19]:

def p_fun_sim(t_now):
 p_template_sim['Theta_1'] = 2.25e-4
 p_template_sim['Theta_2'] = 2.25e-4
 p_template_sim['Theta_3'] = 2.25e-4
 return p_template_sim

This function is now supplied to the simulator in the following way:

[20]:

simulator.set_p_fun(p_fun_sim)

Setup

Finally, we call:

[21]:

simulator.setup()

Creating the loop

While the full loop should also include a controller, we are currently only interested in showcasing the estimator. We therefore estimate the states for an arbitrary initial condition and some random control inputs (shown below).

[22]:

x0 = np.pi*np.array([1, 1, -1.5, 1, -5, 5, 0, 0]).reshape(-1,1)

To make things more interesting we pass the estimator a perturbed initial state:

[23]:

x0_mhe = x0*(1+0.5*np.random.randn(8,1))

and use the x0 property of the simulator and estimator to set the initial state:

[24]:

simulator.x0 = x0
mhe.x0_mhe = x0_mhe
mhe.p_est0 = 1e-4

It is also adviced to create an initial guess for the MHE optimization problem. The simplest way is to base that guess on the initial state, which is done automatically when calling:

[25]:

mhe.set_initial_guess()

Setting up the Graphic

We are again using the do-mpc graphics module. This versatile tool allows us to conveniently configure a user-defined plot based on Matplotlib and visualize the results stored in the mhe.data, simulator.data objects.

We start by importing matplotlib:

[26]:

import matplotlib.pyplot as plt
import matplotlib as mpl
Customizing Matplotlib:
mpl.rcParams['font.size'] = 18
mpl.rcParams['lines.linewidth'] = 3
mpl.rcParams['axes.grid'] = True

And initializing the graphics module with the data object of interest. In this particular example, we want to visualize both the mpc.data as well as the simulator.data.

[27]:

mhe_graphics = do_mpc.graphics.Graphics(mhe.data)
sim_graphics = do_mpc.graphics.Graphics(simulator.data)

Next, we create a figure and obtain its axis object. Matplotlib offers multiple alternative ways to obtain an axis object, e.g. subplots [https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.subplots.html], subplot2grid [https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.subplot2grid.html], or simply gca [https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.gca.html]. We use subplots:

[28]:

%%capture
We just want to create the plot and not show it right now. This "inline magic" suppresses the output.
fig, ax = plt.subplots(3, sharex=True, figsize=(16,9))
fig.align_ylabels()

We create another figure to plot the parameters:
fig_p, ax_p = plt.subplots(1, figsize=(16,4))

Most important API element for setting up the graphics module is graphics.add_line, which mimics the API of model.add_variable, except that we also need to pass an axis.

We want to show both the simulator and MHE results on the same axis, which is why we configure both of them identically:

[29]:

%%capture
for g in [sim_graphics, mhe_graphics]:
 # Plot the angle positions (phi_1, phi_2, phi_2) on the first axis:
 g.add_line(var_type='_x', var_name='phi', axis=ax[0])
 ax[0].set_prop_cycle(None)
 g.add_line(var_type='_x', var_name='dphi', axis=ax[1])
 ax[1].set_prop_cycle(None)

 # Plot the set motor positions (phi_m_1_set, phi_m_2_set) on the second axis:
 g.add_line(var_type='_u', var_name='phi_m_set', axis=ax[2])
 ax[2].set_prop_cycle(None)

 g.add_line(var_type='_p', var_name='Theta_1', axis=ax_p)

ax[0].set_ylabel('angle position [rad]')
ax[1].set_ylabel('angular \n velocity [rad/s]')
ax[2].set_ylabel('motor angle [rad]')
ax[2].set_xlabel('time [s]')

Before we show any results we configure we further configure the graphic, by changing the appearance of the simulated lines. We can obtain line objects from any graphics instance with the result_lines property:

[30]:

sim_graphics.result_lines

[30]:

<do_mpc.tools.structure.Structure at 0x7fa7ba0e84f0>

We obtain a structure that can be queried conveniently as follows:

[31]:

First element for state phi:
sim_graphics.result_lines['_x', 'phi', 0]

[31]:

[<matplotlib.lines.Line2D at 0x7fa7bab22340>]

In this particular case we want to change all result_lines with:

[32]:

for line_i in sim_graphics.result_lines.full:
 line_i.set_alpha(0.4)
 line_i.set_linewidth(6)

We furthermore use this property to create a legend:

[33]:

ax[0].legend(sim_graphics.result_lines['_x', 'phi'], '123', title='Sim.', loc='center right')
ax[1].legend(mhe_graphics.result_lines['_x', 'phi'], '123', title='MHE', loc='center right')

[33]:

<matplotlib.legend.Legend at 0x7fa7bab34f70>

and another legend for the parameter plot:

[34]:

ax_p.legend(sim_graphics.result_lines['_p', 'Theta_1']+mhe_graphics.result_lines['_p', 'Theta_1'], ['True','Estim.'])

[34]:

<matplotlib.legend.Legend at 0x7fa7bab34d30>

Running the loop

We investigate the closed-loop MHE performance by alternating a simulation step (y0=simulator.make_step(u0)) and an estimation step (x0=mhe.make_step(y0)). Since we are lacking the controller which would close the loop (u0=mpc.make_step(x0)), we define a random control input function:

[35]:

def random_u(u0):
 # Hold the current value with 80% chance or switch to new random value.
 u_next = (0.5-np.random.rand(2,1))*np.pi # New candidate value.
 switch = np.random.rand() >= 0.8 # switching? 0 or 1.
 u0 = (1-switch)*u0 + switch*u_next # Old or new value.
 return u0

The function holds the current input value with 80% chance or switches to a new random input value.

We can now run the loop. At each iteration, we perturb our measurements, for a more realistic scenario. This can be done by calling the simulator with a value for the measurement noise, which we defined in the model above.

[36]:

%%capture
np.random.seed(999) #make it repeatable

u0 = np.zeros((2,1))
for i in range(50):
 u0 = random_u(u0) # Control input
 v0 = 0.1*np.random.randn(model.n_v,1) # measurement noise
 y0 = simulator.make_step(u0, v0=v0)
 x0 = mhe.make_step(y0) # MHE estimation step

We can visualize the resulting trajectory with the pre-defined graphic:

[37]:

sim_graphics.plot_results()
mhe_graphics.plot_results()
Reset the limits on all axes in graphic to show the data.
mhe_graphics.reset_axes()

Mark the time after a full horizon is available to the MHE.
ax[0].axvline(1)
ax[1].axvline(1)
ax[2].axvline(1)

Show the figure:
fig

[37]:

[image: _images/mhe_example_76_0.png]

Parameter estimation:

[38]:

ax_p.set_ylim(1e-4, 4e-4)
ax_p.set_ylabel('mass inertia')
ax_p.set_xlabel('time [s]')
fig_p

[38]:

[image: _images/mhe_example_78_0.png]

MHE Advantages

One of the main advantages of moving horizon estimation is the possibility to set bounds for states, inputs and estimated parameters. As mentioned above, this is crucial in the presented example. Let’s see how the MHE behaves without realistic bounds for the estimated mass inertia of disc one.

We simply reconfigure the bounds:

[39]:

mhe.bounds['lower','_p_est', 'Theta_1'] = -np.inf
mhe.bounds['upper','_p_est', 'Theta_1'] = np.inf

And setup the MHE again. The backend is now recreating the optimization problem, taking into consideration the currently saved bounds.

[40]:

mhe.setup()

We reset the history of the estimator and simulator (to clear their data objects and start “fresh”).

[41]:

mhe.reset_history()
simulator.reset_history()

Finally, we run the exact same loop again obtaining new results.

[42]:

%%capture
np.random.seed(999) #make it repeatable

u0 = np.zeros((2,1))
for i in range(50):
 u0 = random_u(u0) # Control input
 v0 = 0.1*np.random.randn(model.n_v,1) # measurement noise
 y0 = simulator.make_step(u0, v0=v0)
 x0 = mhe.make_step(y0) # MHE estimation step

These results now look quite terrible:

[43]:

sim_graphics.plot_results()
mhe_graphics.plot_results()
Reset the limits on all axes in graphic to show the data.
mhe_graphics.reset_axes()

Mark the time after a full horizon is available to the MHE.
ax[0].axvline(1)
ax[1].axvline(1)
ax[2].axvline(1)

Show the figure:
fig

[43]:

[image: _images/mhe_example_88_0.png]

Clearly, the main problem is a faulty parameter estimation, which is off by orders of magnitude:

[44]:

ax_p.set_ylabel('mass inertia')
ax_p.set_xlabel('time [s]')
fig_p

[44]:

[image: _images/mhe_example_90_0.png]

Thank you, for following through this short example on how to use do-mpc. We hope you find the tool and this documentation useful.

We also want to emphasize that we skipped over many details, further functions etc. in this introduction. Please have a look at our more complex examples to get a better impression of the possibilities with do-mpc.

 Orthogonal collocation on finite elements

Orthogonal collocation on finite elements

A dynamic system model is at the core of all model predictive control (MPC) and moving horizon estimation (MHE)
formulations.
This model allows to predict and optimize the future behavior of the system (MPC)
or establishes the relationship between past measurements and estimated states (MHE).

When working with do-mpc an essential question is whether a
discrete or continuous model is supplied.
The discrete time formulation:

\[\begin{split}x_{k+1} &= f(x_{k},u_{k},z_{k},p_{tv,k},p),\\\\
0 &= g(x_{k},u_{k}, z_{k},p_{tv,k},p),\\\\\end{split}\]

gives an explicit relationship for the future states \(x_{k+1}\)
based on the current states \(x_k\), inputs \(u_k\),
algebraic states \(z_k\) and further parameters \(p\), \(p_{tv,k}\).
It can be evaluated in a straight-forward fashion to recursively obtain the future states of the system,
based on an initial state \(x_0\) and a sequence of inputs.

However, many dynamic model equations are given in the continuous time form as ordinary differential equations (ODE)
or differential algebraic equations (DAE):

\[\begin{split}\dot{x} &= f(x(t),u(t),z(t),p_{tv}(t),p(t)),\\\\
0 &= g(x(t),u(t),z(t),p_{tv}(t),p(t)).\\\\\end{split}\]

Incorporating the ODE/DAE is typically less straight-forward than their discrete-time counterparts and a variety of methods are applicable.
An (incomplete!) overview and classification of commonly used methods is shown in the diagram below:

digraph G {
 node [shape="rectangle"];
 ODE [label="ODE/DAE continous time model"]
 direct
 indirect
 PMP [label="Pontryagin minimum principle"]
 sequential
 simultaneous [label="simultaneous"]
 single_shoot [label="single shooting"]
 mult_shoot [label="multiple shooting"]
 full_disc [label="full discretization"]
 Euler
 RungeKutta [label="Runge-Kutta"]
 OC [label="orthogonal collocation \n on finite elements", fillcolor="#edf0f2", style="filled"]

 ODE -> direct, indirect
 indirect -> PMP
 direct -> simultaneous, sequential

 sequential -> single_shoot, full_disc
 simultaneous -> mult_shoot, full_disc
 full_disc -> Euler, RungeKutta, OC
}

Approaching an ODE/DAE continuous model for MPC or MHE.

do-mpc is based on orthogonal collocation on finite elements which is a direct, simultaneous, full discretization approach.

Direct: The continuous time variables are discretized to transform the infinite-dimensional optimal control problem
to a finite dimensional nonlinear programming (NLP) problem.

Simultaneous: Both the control inputs and the states are discretized.

Full discretization: A discretization scheme is hand implemented in terms of symbolic variables instead of using an ODE/DAE solver.

The full discretization is realized with orthogonal collocation on finite elements which is discussed in the remainder of this post.
The content is based on [Biegler2010].

Lagrange polynomials for ODEs

To simplify things, we now consider the following ODE:

\[\dot{x} = f(x), \quad x(0)=x_0,\]

Fundamental for orthogonal collocation is the idea that the solution of the ODE
\(x(t)\) can be approximated accurately with a polynomial of order \(K+1\):

\[x^K_i(t) = \alpha_0 + \alpha_1 t + \dots + \alpha_{K} t^K.\]

This approximation should be valid on small time-intervals \(t\in [t_i, t_{i+1}]\), which
are the finite elements mentioned in the title.

The interpolation is based on \(j=0,\dots,K\) interpolation points \((t_j, x_{i,j})\) in the interval \([t_i, t_{i+1}]\).
We are using the Lagrange interpolation polynomial:

\[\begin{split}&x^K_i(t) = \sum_{j=0}^K L_j(\tau) x_{i,j}\\
\text{where:}\quad
&L_j(\tau) = \prod_{
\begin{array}{c}k=0\\ k \neq j \end{array}
}^K \frac{(\tau-\tau_k)}{(\tau_j-\tau_k)}, \quad \tau &= \frac{t-t_i}{\Delta t_i}, \quad \Delta t_i=t_{i+1}-t_i.\end{split}\]

We call \(L_j(\tau)\) the Lagrangrian basis polynomial with the dimensionless time \(\tau \in [0,1]\).
Note that the basis polynomial \(L_j(\tau)\) is constructed to be \(L_j(\tau_j)=1\) and \(L_j(\tau_i)=0\)
for all other interpolation points \(i\neq j\).

This polynomial ensures that for the interpolation points \(x^K(t_{i,j})=x_{i,j}\).
Such a polynomial is fitted to all finite elements, as shown in the figure below.

[image: _images/orthogonal_collocation.svg]
Lagrange polynomials representing the solution of an ODE on neighboring finite elements.

Note that the collocation points (round circles above) can be choosen freely
while obeying \(\tau_0 = 0\) and \(\tau_{j}<\tau_{j+1}\leq1\).
There are, however, better choices than others which will be discussed in Collocation with orthogonal polynomials.

Deriving the integration equations

So far we have seen how to approximate an ODE solution
with Lagrange polynomials given a set of values from the solution.
This may seem confusing because we are looking for these values in the first place.
However, it still helps us because we can now state conditions based on this polynomial representation
that must hold for the desired solution:

\[\left.\frac{d x^K_i}{dt}\right|_{t_{i,k}} = f(x_{i,k}), \quad k=1,\dots,K.\]

This means that the time derivatives from our polynomial approximation evaluated
at the collocation points must be equal to the original ODE at these same points.

Because we assumed a polynomial structure of \(x^K_i(t)\) the time derivative can be conveniently expressed as:

\[\left.\frac{d x^K_i}{dt}\right|_{t_{i,k}} = \sum_{j=0}^K \frac{x_{i,j}}{\Delta t}
\underbrace{\left.\frac{d L_j}{d \tau}\right|_{\tau_k}}_{a_{j,k}},\]

for which we substituted \(t\) with \(\tau\).
It is important to notice that for fixed collocation points the terms \(a_{j,k}\)
are constants that can be pre-computed.
The choice of these points is significant and will be discussed in
Collocation with orthogonal polynomials.

Collocation constraints

The solution of the ODE, i.e. the values of \(x_{i,j}\) are now obtained by solving
the following equations:

\[\sum_{j=0}^K a_{j,k} \frac{x_{i,j}}{\Delta t} = f(x_{i,k}), \quad k=1,\dots,K.\]

Continuity constraints

The avid reader will have noticed that through the collocation constraints
we obtain a system of \(K-1\) equations for \(K\) variables, which is insufficient.

The missing equation is used to ensure continuity between the finite elements shown in the figure above.
We simply enforce equality between the final state of element \(i\), which we denote \(x_i^f\)
and the initial state of the successive interval \(x_{i+1,0}\):

\[x_{i+1,0} = x_{i}^f\]

However, with our choice of collocation points \(\tau_0=0,\ \tau_j<\tau_{j+1}\leq 1,\ j=0,\dots,K-1\),
we do not explicitly know \(x_i^f\) in the general case (unless \(\tau_{K} = 1\)).

We thus evaluate the interpolation polynomial again and obtain:

\[x_i^f = x^K_i(t_{i+1}) = \sum_{j=0}^K \underbrace{L_j(\tau=1)}_{d_j} x_{i,j},\]

where similarly to the collocation coefficients \(a_{j,k}\), the continuity coefficient \(d_j\) can be precomputed.

Solving the ODE problem

It is important to note that orthogonal collocation on finite elements is an implict ODE integration scheme, since we need
to evaluate the ODE equation for yet to be determined future states of the system.
While this seems inconvenient for simulation, it is straightforward to incorporate in a
model predictive control (MPC) or moving horizon estimation (MHE) formulation, which are
essentially large constrained optimization problems of the form:

\[\begin{split}\min_z \quad &c(z)\\
\text{s.t.:} \quad & h(z) = 0\\
& g(z) \leq 0\end{split}\]

where \(z\) now denotes a generic optimization variable,
\(c(z)\) a generic cost function and \(h(z)\) and \(g(z)\) the equality and inequality constraints.

Clearly, the equality constraints \(h(z)\) can be extended with the above mentioned collocation constraints,
where the states \(x_{i,j}\) are then optimization variables of the problem.

Solving the MPC / MHE optimization problem then implictly calculates the solution of the governing ODE
which can be taken into consideration for cost, constraints etc.

Collocation with orthogonal polynomials

Finally we need to discuss how to choose the collocation points \(\tau_j,\ j=0,\dots, K\).
Only for fixed values of the collocation points the collocation constraints become mere algebraic equations.

Just a short disclaimer:
Ideal values for the collocation points are typically found in tables, e.g. in [Biegler2010].
The following simply illustrates how these suggested values are derived and are not implemented in practice.

We recall that the solution of the ODE can also be determined with:

\[x(t_i) = x(t_{i-1}) + \int_{t_{i-1}}^{t_i} f(x(t)) dt,\]

which is solved numerically with the quadrature formula:

\[\begin{split}&x(t_i) = x(t_{i-1}) + \sum_{j=1}^K \omega_j \Delta t f(x(t_{i,j})\\
&t_{i,j} = t_{i-1} + \tau_j \Delta t\end{split}\]

The collocation points are now chosen such that the quadrature formula provides an
exact solution for the original ODE if \(f(x(t)\) is a polynomial in \(t\) of order \(2K\).
It shows that this is achieved by choosing \(\tau\) as the roots of a \(k\)-th degree polynomial \(P_K(\tau)\)
which fulfils the orthogonal property:

\[\int_0^1 P_i(\tau) P_{j}(\tau) = 0, \quad i=0,\dots, K-1,\ j=1,\dots, K\]

The resulting collocation points are called Legendre roots.

Similarly one can compute collocation points from the more general Gauss-Jacoby polynomial:

\[\int_0^1 (1-\tau)^{\alpha} \tau^{\beta} P_i(\tau) P_{j}(\tau) = 0, \quad i=0,\dots, K-1,\ j=1,\dots, K\]

which for \(\alpha=0,\ \beta=0\) results exactly in the Legrendre polynomial from above
where the truncation error is found to be \(\mathcal{O}(\Delta t^{2K})\).
For \(\alpha=1,\ \beta=0\) one can determine the Gauss-Radau collocation points with truncation error
\(\mathcal{O}(\Delta t^{2K-1})\).

Both, Gauss-Radau and Legrende roots are commonly used for orthogonal collocation and can be selected
in do-mpc.

For more details about the procedure and the numerical values for the collocation points we refer to [Biegler2010].

Bibliography

	Biegler2010(1,2,3)

	L.T. Biegler. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. SIAM, 2010.

 Basics of model predictive control

Basics of model predictive control

Model predictive control (MPC) is a control scheme
where a model is used for predicting the future behavior of the system over finite time window, the horizon.
Based on these predictions and the current measured/estimated state of the system,
the optimal control inputs with respect to a defined control objective and subject to system constraints is computed.
After a certain time interval, the measurement, estimation and computation process is repeated with a shifted horizon.
This is the reason why this method is also called receding horizon control (RHC).

Major advantages of MPC in comparison to traditional reactive control approaches, e.g. PID, etc. are

	Proactive control action: The controller is anticipating future disturbances, set-points etc.

	Non-linear control: MPC can explicitly consider non-linear systems without linearization

	Arbitrary control objective: Traditional set-point tracking and regulation or economic MPC

	constrained formulation: Explicitly consider physical, safety or operational system constraints

[image: _images/anim.gif]
The MPC principle is visualized in the graphic above.
The dotted line indicates the current prediction and the solid line represents the realized values.
The graphic is generated using the innate plotting capabilities of do-mpc.

In the following, we will present the type of models, we can consider.
Afterwards, the (basic) optimal control problem (OCP) is presented.
Finally, multi-stage NMPC, the approach for robust NMPC used in do-mpc is explained.

System model

The system model plays a central role in MPC.
do-mpc enables the optimal control of continuous and discrete-time nonlinear and uncertain systems.
For the continuous case, the system model is defined by

\[\begin{split}\dot{x}(t) = f(x(t),u(t),z(t),p(t),p_{\text{tv}}(t)), \\
y(t) = h(x(t),u(t),z(t),p(t),p_{\text{tv}}(t)),\end{split}\]

and for the discrete-time case by

\[\begin{split}x_{k+1} = f(x_k,u_k,z_k,p_k,p_{\text{tv},k}), \\
y_k = h(x_k,u_k,z_k,p_k,p_{\text{tv},k}).\end{split}\]

The states of the systems are given by \(x(t),x_k\), the control inputs by \(u(t),u_k\),
algebraic states by \(z(t),z_k\), (uncertain) parameters by \(p(t),p_k\),
time-varying (but known) parameters by \(p_{\text{tv}}(t),p_{\text{tv},k}\) and measurements by \(y(t),y_k\), respectively.
The time is denoted as \(t\) for the continuous system and the time steps for the discrete system are indicated by \(k\).

Model predictive control problem

For the case of continuous systems, trying to solve OCP directly is in the general case computationally intractable because it is an infinite-dimensional problem.
do-mpc uses a full discretization method, namely orthogonal collocation,
to discretize the OCP.
This means, that both the OCP for the continuous and the discrete system result in a similar discrete OCP.

For the application of MPC, the current state of the system needs to be known.
In general, the measurement \(y_k\) does not contain the whole state vector, which means a state estimate \(\hat{x}_k\) needs to be computed.
The state estimate can be derived e.g. via moving horizon estimation.

The OCP is then given by:

\[\begin{split}&\min_{\mathbf{x}_{0:N+1},\mathbf{u}_{0:N},\mathbf{z}_{0:N}} & & m(x_{N+1}) + \sum_{k=0}^{N} l(x_k,z_k,u_k,p_k,p_{\text{tv},k}) && \\
&\text{subject to:} & & x_0 = \hat{x}_0, & \\
&&& x_{k+1} = f(x_k,u_k,p_k,p_{\text{tv},k}), &\, \forall k=0,\dots,N,\\
&&& g(x_k,u_k,p_k,p_{\text{tv},k}) \leq 0 &\, \forall k=0,\dots,N, \\
&&& x_{\text{lb}} \leq x_k \leq x_{\text{ub}}, &\, \forall k=0,\dots,N, \\
&&& u_{\text{lb}} \leq u_k \leq u_{\text{ub}}, &\, \forall k=0,\dots,N, \\
&&& z_{\text{lb}} \leq z_k \leq z_{\text{ub}}, &\, \forall k=0,\dots,N, \\
&&& g_{\text{terminal}}(x_{N+1}) \leq 0, &\end{split}\]

where \(N\) is the prediction horizon and \(\hat{x}_0\) is the current state estimate,
which is either measured (state-feedback) or estimated based on an incomplete measurement (\(y_k\)).
Note that we introduce the bold letter notation,
e.g. \(\mathbf{x}_{0:N+1}=[x_0, x_1, \dots, x_{N+1}]^T\) to represent sequences.

do-mpc allows to set upper and lower bounds for the states \(x_{\text{lb}}, x_{\text{ub}}\), inputs \(u_{\text{lb}}, u_{\text{ub}}\) and algebraic states \(z_{\text{lb}}, z_{\text{ub}}\).
Terminal constraints can be enforced via \(g_{\text{terminal}}(\cdot)\) and general nonlinear constraints can be defined with \(g(\cdot)\), which can also be realized as soft constraints.
The objective function consists of two parts, the mayer term \(m(\cdot)\) which gives the cost of the terminal state and the lagrange term \(l(\cdot)\) which is the cost of each stage \(k\).

This formulation is the basic formulation of the OCP, which is solved by do-mpc.
In the next section, we will explain how do-mpc considers uncertainty to enable robust control.

Note

Please be aware, that due to the discretization in case of continuous systems,
a feasible solution only means that the constraints are satisfied point-wise in time.

Robust multi-stage NMPC

One of the main features of do-mpc is robust control, i.e. the control action satisfies the system constraints under the presence of uncertainty.
In particular, we apply the multi-stage approach which is described in the following.

General description

The basic idea for the multi-stage approach is to consider various scenarios,
where a scenario is defined by one possible realization of all uncertain parameters at every control instant within the horizon.
The family of all considered discrete scenarios can be represented as a tree structure, called the scenario tree:

[image: _images/robust_multi_stage_scheme.svg]
where one scenario is one path from the root node on the left side to one leaf node on the right, e.g. the state evolution for the first scenario \(S_4\) would be \(x_0 \rightarrow x_1^2 \rightarrow x_2^4 \rightarrow \dots \rightarrow x_5^4\).
At every instant, the MPC problem at the root node \(x_0\) is solved while explicitly taking into account the uncertain future evolution and the existence of future decisions, which can exploit the information gained throughout the evolution progress along the branches.
Through this design, feedback information is considered in the open-loop optimization problem, which reduces the conservativeness of the multi-stage approach.
Considering feedback information also means, that decisions \(u\) branching from the same node need to be identical, because they are based on the same information, e.g. \(u_1^4 = u_1^5 = u_1^6\).

The system equation for a discretized/discrete system in the multi-stage setting is given by:

\[x_{k+1}^j = f(x_k^{p(j)},u_k^j,z_k^{p(j)},p_k^{r(j)},p_{\text{tv},k}),\]

where the function \(p(j)\) refers to the parent state via \(x_k^{p(j)}\) and the considered realization of the uncertainty is given by \(r(j)\) via \(d_k^{r(j)}\).
The set of all occurring exponent/index pairs \((j,k)\) are denoted as \(I\).

Robust horizon

Because the uncertainty is modeled as a collection of discrete scenarios in the multi-stage approach, every node branches into \(\prod_{i=1}^{n_p} v_{i}\) new scenarios, where \(n_p\) is the number of parameters and \(v_{i}\) is the number of explicit values considered for the \(i\)-th parameter.
This leads to an exponential growth of the scenarios with respect to the horizon.
To maintain the computational tractability of the multi-stage approach, the robust horizon \(N_{\text{robust}}\) is introduced, which can be viewed as a tuning parameter.
Branching is then only applied for the first \(N_{\text{robust}}\) steps while the values of the uncertain parameters are kept constant for the last \(N-N_{\text{robust}}\) steps.
The number of considered scenarios is given by:

\[N_{\text{s}} = \left(\prod_{i=1}^{n_p} v_{i}\right)^{N_{\text{robust}}}\]

This results in \(N_{\text{s}} = 9\) scenarios for the presented scenario tree above instead of 243 scenarios, if branching would be applied until the prediction horizon.

The impact of the robust horizon is in general minor, since MPC is based on feedback.
This means the decisions are recomputed in every step after new information (measurements/state estimate) has been obtained and the branches are updated with respect to the current state.

Note

It the uncertainties \(p\) are unknown but constant over time, \(N_{\text{robust}}=1\) is the suggested choice.
In that case, branching of the scenario tree is only required for first time instant (since the uncertainties are constant)
and the computational load is kept minimal.

Mathematical formulation

The formulation of the MPC problem for the multi-stage approach is given by:

\[\begin{split}& \min_{x_k^j, u_k^j, z_k^j\ \forall (j,k)\in I } &&\,
\sum_{j=1}^{N_{\text{s}}}\omega_i J_j(\mathbf{x}^j_{0:N+1},\mathbf{u}^j_{0:N},\mathbf{z}^j_{0:N})& \\
&\text{subject to:} & & \, x_0 = \hat{x}_0 & \\
&&& \, x_{k+1}^j = f(x_k^{p(j)},u_k^j,z_k^{p(j)},p_k^{r(j)},p_{\text{tv},k}) & \, \forall (j,k) \in I \\
&&& u_k^i = u_k^j \text{ if } x_k^{p(i)} = x_k^{p(j)}, & \, \forall (i,k), (j,k) \in I \\
&&& g(x_k^{p(j)},u_k^j,z_k^{p(j)},p_k^{r(j)},p_{\text{tv},k}) \leq 0 & \, \forall (j,k) \in I \\
&&& x_{\text{lb}} \leq x_k^j \leq x_{\text{ub}} & \, \forall (j,k) \in I \\
&&& u_{\text{lb}} \leq u_k^j \leq u_{\text{ub}} & \, \forall (j,k) \in I \\
&&& z_{\text{lb}} \leq z_k^j \leq z_{\text{ub}} & \, \forall (j,k) \in I \\
&&& g_{\text{terminal}}(x_N^j,z_N^j) \leq 0 & \, \forall (j,N) \in I,\end{split}\]

The objective consists of one term for each scenario,
which can be weighted according to the probability of the scenarios \(\omega_j\), \(j=1,\dots,N_{\text{s}}\).
The cost for each scenario \(J_i\) is given by:

\[J_j = m(x_{N+1}^j) + \sum_{k=0}^{N} l(x_k^{p(j)},u_k^j,z_k^{p(j)},p_k^{r(j)},p_{\text{tv},k}).\]

For all scenarios, which are directly considered in the problem formulation, a feasible solution guarantees constraint satisfaction.
This means if all uncertainties can only take discrete values and those are represented in the scenario tree, constraint satisfaction can be guaranteed.

For linear systems if \(p_{\text{min}} \leq p \leq p_{\text{max}}\), considering the extreme values of the uncertainties in the scenario tree guarantees constraint satisfaction, even if the uncertainties are continuous and time-varying.
This design of the scenario tree for nonlinear systems does not guarantee constraint satisfaction for all \(p \in [p_{\text{min}}, p_{\text{max}}]\).
However, also for nonlinear systems the worst-case scenarios are often at the boundaries of the uncertainty intervals \([p_{\text{min}}, p_{\text{max}}]\).
In practice, considering only the extreme values for nonlinear systems provides good results.

Other commonly used robust MPC schemes, such as tube-based MPC, are not currently implemented in do-mpc but planned for the near future.
Please check our development roadmap on Github [https://github.com/do-mpc/do-mpc] for details and updates.

 Basics of moving horizon estimation

Basics of moving horizon estimation

Moving horizon estimation is an optimization-based state-estimation technique where the current state of the system is inferred based
on a finite sequence of past measurements.
In many ways it can be seen as the counterpart to model predictive control (MPC), which we are describing in our MPC article.

In comparison to more traditional state-estimation methods, e.g. the extended Kalman filter (EKF),
MHE will often outperform the former in terms of estimation accuracy.
This is especially true for non-linear dynamical systems, which are treated rigorously in MHE and where
the EKF is known to work reliably only if the system is almost linear during updates.

Another advantage of MHE is the possible incorporation of further constraints on estimated variables.
These can be used to enforce physical bounds, e.g. fractions between 0 and 1.

All of this comes at the cost of additional computational complexity.
do-mpc mitigates this disadvantage through an efficient implementation which allows for very fast MHE estimation.
Oftentimes, for moderately complex non-linear systems (~10 states) do-mpc will run at 10-100Hz.

System model

The system model plays a central role in MHE.
do-mpc enables state-estimation for continuous and discrete-time nonlinear systems.
For the continuous case, the system model is defined by

\[\begin{split}\dot{x}(t) &= f(x(t),u(t),z(t),p(t),p_{\text{tv}}(t))+w(t), \\
y(t) &= h(x(t),u(t),z(t),p(t),p_{\text{tv}}(t))+v(t),\end{split}\]

and for the discrete-time case by

\[\begin{split}x_{k+1} &= f(x_k,u_k,z_k,p_k,p_{\text{tv},k})+w_k, \\
y_k &= h(x_k,u_k,z_k,p_k,p_{\text{tv},k})+v_k.\end{split}\]

The states of the systems are given by \(x(t),x_k\), the control inputs by \(u(t),u_k\),
algebraic states by \(z(t),z_k\), (possibly uncertain) parameters by \(p(t),p_k\),
time-varying (but known) parameters by \(p_{\text{tv}}(t),p_{\text{tv},k}\) and measurements by \(y(t),y_k\), respectively.
The time is denoted as \(t\) for the continuous system and the time steps for the discrete system are indicated by \(k\).

Furthermore, we assume that the dynamic system equation is disturbed by additive (Gaussian) noise \(w(t),w_k\)
and that we experience additive measurement noise \(v(t), v_k\).
Note that do-mpc allows to activate or deactivate process and measurement noise explicitly for individual variables,
e.g. we can express that inputs are exact and potentially measured states experience a measurement disturbance.

Moving horizon estimation problem

For the case of continuous systems, trying to solve the estimation problem directly is in the general case computationally intractable
because it is an infinite-dimensional problem.
do-mpc uses a full discretization method, namely orthogonal collocation,
to discretize the OCP.
This means, that both for continuous and discrete-time systems we formulate a discrete-time optimization problem to solve the estimation problem.

Concept

The fundamental idea of moving horizon estimation is that the current state of the system is inferred based
on a finite sequence of \(N\) past measurements, while incorporating information from the dynamic system equation.
This is formulated as an optimization problem, where the finite sequence of states, algebraic states and inputs
are optimization variables. These sequences are determined, such that

	The initial state of the sequence is coherent with the previous estimate

	The computed measurements match the true measurements

	The dynamic state equation is obeyed

This concept is visualized in the figure below.

[image: _images/MHE_schematic.svg]
Similarly to model predictive control, the MHE optimization problem is solved repeatedly at each sampling instance.
At each estimation step, the new initial state is the second element from the previous estimation
and we take into consideration the newest measurement while dropping the oldest.
This can be seen in the figure below, which depicts the successive horizon.

[image: _images/MHE_schematic_02.svg]

Mathematical formulation

Following this concept, we formulate the MHE optimization problem as:

\[\begin{split}\underset{
\begin{array}{c}
\mathbf{x}_{0:N+1}, \mathbf{u}_{0:N}, p,\\
\mathbf{w}_{0:N}, \mathbf{v}_{0:N}
\end{array}
}{\mathrm{min}}
&\frac{1}{2}\|x_0-\tilde{x}_0\|_{P_x}^2+\frac{1}{2}\|p-\tilde{p}\|_{P_p}^2
+\sum_{k=0}^{N-1} \left(\frac{1}{2}\|v_k\|_{P_{v,k}}^2
+ \frac{1}{2}\|w_k\|_{P_{w,k}}^2\right),\\
&\left.\begin{aligned}
\mathrm{s.t.}\quad
x_{k+1} &= f(x_k,u_k,z_k,p,p_{\text{tv},k})+ w_k,\\
y_k &= h(x_k,u_k,z_k,p,p_{\text{tv},k}) + v_k, \\
&g(x_k,u_k,z_k,p_k,p_{\text{tv},k}) \leq 0
\end{aligned}\right\} k=0,\dots, N\end{split}\]

where we introduce the bold letter notation,
e.g. \(\mathbf{x}_{0:N+1}=[x_0, x_1, \dots, x_{N+1}]^T\) to represent sequences and where
\(\|x\|_P^2=x^T P x\) denotes the \(P\) weighted squared norm.

As mentioned above some states / measured variables do not experience additive noise,
in which case their respective noise variables \(v_k, w_k\) do not appear in the optimization problem.

Also note that do-mpc allows to estimate parameters which are considered to be constant over the estimation horizon.

 License

License

	GNU LESSER GENERAL PUBLIC LICENSE

	Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

	Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser
General Public License, and the “GNU GPL” refers to version 3 of the GNU
General Public License.

“The Library” refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

	Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

	Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

	Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license
document.

	Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.

c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

	Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user’s computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

	Combined Libraries.

You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

	Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License “or any later version”
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy’s public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

 Installation

Installation

do-mpc is a python 3.x package. Follow this guide to install do-mpc.

If you are new to Python, please read this article [https://protostar.space/why-you-need-python-environments-and-how-to-manage-them-with-conda]
about Python environments. We recommend using a new Python environment for every project and to manage it with miniconda.

Requirements

do-mpc requires the following Python packages and their dependencies:

	numpy

	CasADi

	matplotlib

Option 1: PIP

Simply use PIP and install do-mpc from the terminal.
This has the advantage that do-mpc is always in your Python path
and can be used throughout your projects.

	Install do-mpc:

pip install do-mpc

Tested on Windows and Linux (Ubuntu 19.04).

PIP will also
take care of dependencies and you are immediately ready to go.

Use this option if you plan to use do-mpc without altering the source code,
e.g. write extensions.

	Get example documents:

All resources can be obtained from our release notes page.
Please find the example files that match your currently installed do-mpc version
in the respective section.

Option 2: Clone from Github

More experienced users are advised to clone or fork the most recent version of do-mpc
from GitHub [https://github.com/do-mpc/do-mpc]:

git clone https://github.com/do-mpc/do-mpc.git

In this case, the dependencies from above must be manually taken care of.
You have immediate access to our examples.

HSL linear solver for IPOPT

The standard configuration of do-mpc is based on IPOPT [https://coin-or.github.io/Ipopt/]
to solve the nonlinear constrained optimization problems that arise with the MPC and MHE formulation.
The computational bottleneck of this method is repeatedly solving a large-scale linear systems for which
IPOPT is offering a an interface to a variety of sparse symmetric indefinite linear solver.
IPOPT and thus do-mpc comes by default with the MUMPS [http://mumps.enseeiht.fr/] solver.
It is suggested to try a different linear solver for IPOPT with do-mpc.
Typically, a significant speed boost can be achieved with the HSL [http://www.hsl.rl.ac.uk/ipopt/] MA27 solver.

Option 1: Pre-compiled binaries

When installing CasADi via PIP or Anaconda
(happens automatically when installing do-mpc via PIP),
you obtain the pre-compiled CasADi package.
To use MA27 (or other HSL solver in this setup) please follow these steps:

Linux

(Tested on Ubuntu 19.10)

	Obtain the HSL [http://www.hsl.rl.ac.uk/ipopt/] shared library. Choose the personal licence.

	Unpack the archive and copy its content to a destination of your choice. (e.g. /home/username/Documents/coinhsl/)

	Rename libcoinhsl.so to libhsl.so. CasADi is searching for the shared libraries under a depreciated name.

	Locate your .bashrc file on your home directory (e.g. /home/username/.bashrc)

	Add the previously created directory to your LD_LIBRARY_PATH, by adding the following line to your .bashrc

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/home/ffiedler/Documents/coinhsl/lib"

	Install libgfortran with Anaconda:

conda install -c anaconda libgfortran

Note

To check if MA27 can be used as intended, please first change the solver according to do_mpc.controller.MPC.set_param().
When running the examples, inspect the IPOPT output in the console. Two possible errors are expected:

Tried to obtain MA27 from shared library "libhsl.so", but the following error occured:
libhsl.so: cannot open shared object file: No such file or directory

This error suggests that step three above wasn’t executed or didn’t work.

Tried to obtain MA27 from shared library "libhsl.so", but the following error occured:
libgfortran.so.3: cannot open shared object file: No such file or directory

This error suggests that step six wasn’t executed or didn’t work.

Option 2: Compile from source

Please see the comprehensive guide on the CasADi [https://github.com/casadi/casadi/wiki/Obtaining-HSL] Github Wiki.

 Credit

Credit

The developers of do-mpc own credit to CasADi [https://web.casadi.org/] and Ipopt [https://coin-or.github.io/Ipopt/] which run at the core of our MPC and MHE implementation.

If you use do-mpc for published work please cite it as:

S. Lucia, A. Tatulea-Codrean, C. Schoppmeyer, and S. Engell.
Rapid development of modular and sustainable nonlinear model predictive control solutions.
Control Engineering Practice, 60:51-62, 2017

Please remember to properly cite other software that you might be using too if you use do-mpc (e.g. CasADi, IPOPT, …)

 Structuring your project

Structuring your project

In this guide we show you a suggested structure for your MPC or MHE project.

In general, we advice to use the provided templates from our GitHub [https://github.com/do-mpc/do-mpc] repository
as a starting point. We will explain the structure following the CSTR example.
Simple projects can also be developed as presented in our introductory Jupyter Notebooks (MPC, MHE)

digraph G {
 graph [fontname = "Monaco"];
 node [fontname = "Monaco", fontcolor="#404040", color="#bdbdbd"];
 edge [fontname = "Monaco", color="#707070"];

 Model [label="Model", href="../api/do_mpc.model.Model.html#model", target="_top", shape=box, style=filled]
 MPC [href="../api/do_mpc.controller.MPC.html#mpc", target="_top", shape=box, style=filled]
 Simulator [href="../api/do_mpc.simulator.Simulator.html#simulator", target="_top", shape=box, style=filled]
 MHE [href="../api/do_mpc.estimator.MHE.html#mhe", target="_top", shape=box, style=filled]
 template_model [href="../project_structure.html#template-model", target="_top"];
 template_mpc [href="../project_structure.html#template-mpc", target="_top"];
 template_simulator [href="../project_structure.html#template-simulator", target="_top"];
 template_estimator [href="../project_structure.html#template-estimator", target="_top"];

 template_model -> Model
 Model -> template_mpc, template_simulator, template_estimator;

 Model [shape=box, style=filled]

 subgraph cluster_loop {{
 rankdir=TB;
 rank=same;
 MPC -> Simulator [label="inputs"];
 Simulator -> MHE [label="meas."];
 MHE -> MPC [label="states"];
 }}
 template_mpc -> MPC;
 template_simulator -> Simulator;
 template_estimator -> MHE;
}

Project structure

We split our MHE / MPC configuration into five separate files:

	template_model.py

	Define the dynamic model

	template_mpc.py

	Configure the MPC controller

	template_simulator.py

	Configure the DAE/ODE/discrete simulator

	template_estimator.py

	Configure the estimator (MHE / EKF / state-feedback)

	main.py

	Obtain all configured modules and run the loop.

The files all include a single function and return the configured do_mpc.model.Model,
do_mpc.controller.MPC, do_mpc.simulator.Simulator
or do_mpc.estimator.MHE objects, when called from a central main.py script.

template_model

The do-mpc model class is at the core of all other components and contains the
mathematical description of the investigated dynamical system in the form of
ordinary differential equations (ODE) or differential algebraic equations (DAE).

The template_model.py file will be structured as follows:

def template_model():
 # Obtain an instance of the do-mpc model class
 # and select time discretization:
 model_type = 'continuous' # either 'discrete' or 'continuous'
 model = do_mpc.model.Model(model_type)

 # Introduce new states, inputs and other variables to the model, e.g.:
 C_b = model.set_variable(var_type='_x', var_name='C_b', shape=(1,1))
 ...

 Q_dot = model.set_variable(var_type='_u', var_name='Q_dot')
 ...

 # Set right-hand-side of ODE for all introduced states (_x).
 # Names are inherited from the state definition.
 model.set_rhs('C_b', ...)

 # Setup model:
 model.setup()

 return model

template_mpc

With the configured model, it is possible to configure and setup the MPC controller.
Note that the optimal control problem (OCP) is always given in the following form:

\[\begin{split}&\min_{x,u,z}\quad &\sum_{k=0}^{N}\left(\underbrace{l(x_k,u_k,z_k,p)}_{\text{lagrange term}}
+ \underbrace{\Delta u_k^T R \Delta u_k}_{\text{r-term}}\right)
+ &\underbrace{m(x_{N+1})}_{\text{meyer term}}\\
&\text{subject to:} &\quad x_{\text{lb}} \leq x_k \leq x_{\text{ub}} & \forall k=0,\dots, N+1 \\
& &\quad u_{\text{lb}} \leq u_k \leq u_{\text{ub}} & \forall k=0,\dots, N\\
& &\quad z_{\text{lb}} \leq z_k \leq z_{\text{ub}} & \forall k=0,\dots, N\\
& & m\left(x_k, u_k, z_k, p_k, p_k^{\text{tv}}\right) \leq m_{\text{ub}} & \forall k=0,\dots, N\end{split}\]

The configuration of the do_mpc.controller.MPC class in template_mpc.py can be done as follows:

def template_mpc(model):
 # Obtain an instance of the do-mpc MPC class
 # and initiate it with the model:
 mpc = do_mpc.controller.MPC(model)

 # Set parameters:
 setup_mpc = {
 'n_horizon': 20,
 'n_robust': 1,
 't_step': 0.005,
 ...
 }
 mpc.set_param(**setup_mpc)

 # Configure objective function:
 mterm = (_x['C_b'] - 0.6)**2 # Setpoint tracking
 lterm = (_x['C_b'] - 0.6)**2 # Setpoint tracking

 mpc.set_objective(mterm=mterm, lterm=lterm)
 mpc.set_rterm(F=0.1, Q_dot = 1e-3) # Scaling for quad. cost.

 # State and input bounds:
 mpc.bounds['lower', '_x', 'C_b'] = 0.1
 mpc.bounds['upper', '_x', 'C_b'] = 2.0
 ...

 mpc.setup()

 return mpc

template_simulator

In many cases a developed control approach is first tested on a simulated system.
do-mpc responds to this need with the simulator class.
The simulator uses state-of-the-art DAE solvers, e.g. Sundials CVODE [https://computing.llnl.gov/projects/sundials/cvode] to solve the DAE equations defined in the supplied model.
This will often be the same model as defined for the optimizer but it is also possible to use a more complex model of the same system.

The simulator is configured and setup with the supplied model in the template_simulator.py file,
which is structured as follows:

def template_simulator(model):
 # Obtain an instance of the do-mpc simulator class
 # and initiate it with the model:
 simulator = do_mpc.simulator.Simulator(model)

 # Set parameter(s):
 simulator.set_param(t_step = 0.005)

 # Optional: Set function for parameters and time-varying parameters.

 # Setup simulator:
 simulator.setup()

 return simulator

template_estimator

In the case that a dedicated estimator is required, another python file should be added to the
project. Configuration and setup of the moving horizon estimator (MHE) will be structured as follows:

def template(mhe):
 # Obtain an instance of the do-mpc MHE class
 # and initiate it with the model.
 # Optionally pass a list of parameters to be estimated.
 mhe = do_mpc.estimator.MHE(model)

 # Set parameters:
 setup_mhe = {
 'n_horizon': 10,
 't_step': 0.1,
 'meas_from_data': True,
 }
 mhe.set_param(**setup_mhe)

 # Set custom objective function
 # based on:
 y_meas = mhe._y_meas
 y_calc = mhe._y_calc

 # and (for the arrival cost):
 x_0 = mhe._x
 x_prev = mhe._x_prev

 ...
 mhe.set_objective(...)

 # Set bounds for states, parameters, etc.
 mhe.bounds[...] = ...

 # [Optional] Set measurement function.
 # Measurements are read from data object by default.

 mhe.setup()

 return mhe

Note that the cost function for the MHE can be freely configured using the available variables.
Generally, we suggest to choose the typical MHE formulation:

\[\begin{split}J= &\underbrace{(x_0 - \tilde{x}_0)^T P_x (x_0 - \tilde{x}_0)}_{\text{arrival cost states}} +
 \underbrace{(p_0 - \tilde{p}_0)^T P_p (p_0 - \tilde{p}_0)}_{\text{arrival cost params.}} \\
 &+\sum_{k=0}^{n-1} \underbrace{(h(x_k, u_k, p_k) - y_k)^T P_{y,k} (h(x_k, u_k, p_k) - y_k)}_{\text{stage cost}}\end{split}\]

The measurement function must be defined in the model definition and typically contains
the inputs. Inputs are not treated separately as in some other formulations.

main script

All previously defined functions are called from a single main.py file, e.g.:

from template_model import template_model
from template_mpc import template_mpc
from template_simulator import template_simulator

model = template_model()
mpc = template_mpc(model)
simulator = template_simulator(model)
estimator = do_mpc.estimator.StateFeedback(model)

Simple configurations, as for the do_mpc.estimator.StateFeedback
class above are often directly implemented in the main.py file.

Initial state & guess

Afterwards we set the initial state (true state) for the simulator.
Note that in proper investigations we usually have a different initial state
for the simulator (true state) and e.g. the estimator.

Set the initial state of simulator:
C_a_0 = 0.8
...
x0 = np.array([C_a_0, ...]).reshape(-1,1)

simulator.x0 = x0

We can set the initial guessed state for the MHE by modifying its attribute
similarly as for the simulator shown above. The MPC initial guess is given when
calling the function do_mpc.controller.MPC.make_step() for the first time.

Graphics configuration

Visualization the estimation and control results is key to evaluating performance
and identifying potential problems. do-mpc has a powerful graphics library based on
Matplotlib for quick and customizable graphics.
After creating a blank class instance and initiating a figure object with:

Initialize graphic:
graphics = do_mpc.graphics.Graphics()

fig, ax = plt.subplots(5, sharex=True)

we need to configure where and what to plot, with the graphics.Graphics.add_line() method:

graphics.add_line(var_type='_x', var_name='C_a', axis=ax[0])
Fully customizable:
ax[0].set_ylabel('c [mol/l]')
ax[0].set_ylim(...)
...

Note that we are not plotting anything just yet.

closed-loop

As shown in Diagram Project structure, after obtaining the different do-mpc
objects they can be used in the main loop. In code form the loop looks like this:

for k in range(N_iterations):
 u0 = mpc.make_step(x0)
 y_next = simulator.make_step(u0)
 x0 = estimator.make_step(y_next)

Instead of running for a fixed number of iterations, we can also start an infinite loop with:

while True:
 ...

or have some checks active:

while mpc._x0['C_b'] <= 0.8:
 ...

During or after the loop, we are using the previously configured graphics class.
Open-loop predictions can be plotted at each sampling time:

for k in range(N_iterations):
 u0 = mpc.make_step(x0)
 y_next = simulator.make_step(u0)
 x0 = estimator.make_step(y_next)

 graphics.reset_axes()
 graphics.plot_results(mpc.data, linewidth=3)
 graphics.plot_predictions(mpc.data, linestyle='--', linewidth=1)
 plt.show()
 input('next step')

Furthermore, we can obtain a visualization of the full closed-loop trajectory after the loop:

graphics.plot_results(mpc.data)

 FAQ

FAQ

Some tips and tricks when you can’t rule them all.

Time-varying parameters

Time-varying parameters are an important feature of do-mpc.
But when do I need them, how are they implemented and what makes them different from regular parameters?

With model predictive control and moving horizon estimation we are considering finite future (control) or past (estimation) trajectories
based on a model of our system.
These finite sequences are shifting at each estimation and control step.
Time-varying parameters are required, when:

	the model is subject to some exterior influence (e.g. weather prediction) that is varying at each element of the sequence.

	the MPC/MHE cost function contains elements (e.g. a reference for control) that is varying at each element of the sequence.

Both cases have in common that the parameters are a priori known and not constant over the prediction / estimation horizon.
This is the main difference to regular parameters which typically only influence the model (not the cost function)
and can be estimated with moving horizon estimation and considered as parametric uncertainties for robust model predictive control.

Implementation

Time-varying parameters are always introduced in the do-mpc do_mpc.model.Model with the
do_mpc.model.Model.set_variable method. For example:

model_type = 'continuous' # either 'discrete' or 'continuous'
model = do_mpc.model.Model(model_type)

Introduce state temperature:
temperature = model.set_variable(var_type='_x', var_name='temperature')
Introduce tvp: Set-point for the temperature
temperature_set_point= model.set_variable(var_type='_tvp', var_name='temperature_set_point')
Introduce tvp: External temperature (disturbance)
temperature_external = model.set_variable(var_type='_tvp', var_name='temperature_external')

...

The obtained time-varying parameters can be used throughout the model and all derived classes.
In the shown example, we assume that the external temperature has an influence on our temperature state.
We can thus incorporate this variable in the ODE:

model.set_rhs('temperature', alpha*(temperature_external-temperature))

MPC configuration

Furthermore, we want to use the introduced set-point in a quadratic MPC cost function.
To do this, we initiate an do_mpc.controller.MPC object with the configured model:

mpc = do_mpc.controller.MPC(model)

mpc.set_param(n_horizon = 20, t_step = 60)

And then use the attributes do_mpc.model.Model.x and do_mpc.model.Model.tvp
to formulate a quadratic tracking cost.

lterm = (model.x['temperature']-model.tvp['temperature_set_point'])**2
mterm = lterm
mpc.set_objective(lterm=lterm, mterm=mterm)

Note

We assume here that the mpc controller is not configured in the same Python scope as the model.
Thus the variables (e.g. temperature_external, temperature, …) are not necessarily available.
Instead, these variables are obtained from the model with the shown attributes.

After invoking the do_mpc.controller.MPC.setup() method this will create the following cost function:

\[J = \sum_{k=0}^{N+1} (T_k-T_{k,\text{set}})^2\]

The only problem that remains is: What are the values for the set-point for the temperature and the external temperature for the ODE equation?
So far we have only introduced them as symbolic variables.

What makes the definition of these values so complicated is that at each control step, we need not only a single value for
these variables but an entire sequence.
Furthermore, these sequences are not necessarily the same (shifted) values at the next step.

To address this problem do-mpc allows the user to declare a tvp-function with do_mpc.controller.MPC.set_tvp_fun()
which is internally invoked at each call of the MPC controller with do_mpc.controller.MPC.make_step().

The tvp-function returns numerical values for the currently valid sequences and passes them to the optimizer.
Because the tvp-function is user-defined, the approach allows for the greatest flexibility.

do-mpc also ensures that the output of this function is consistent with the configuration of the model and controller.
This is achieved by requiring the output of the tvp-function to be of a particular structure which can be obtained with
do_mpc.controller.MPC.get_tvp_template(). This structure can be indexed with a time-step and the name of
a previously introduced time-varying parameter. Through indexing these values can be obtained and set conveniently.

In the following we show how this works in practice. The first step is to obtain the tvp_template:

tvp_template = mpc.get_tvp_template()

Afterwards, we define a function that takes as input the current time and returns the tvp_template
filled with the currently valid sequences.

def tvp_fun(t_now):
 for k in range(n_horizon+1):
 tvp_template['_tvp',k,'temperature_set_point'] = 10
 tvp_template['_tvp',k,'temperature_external'] = 20

 return tvp_template

Note

Within the tvp_fun above, the user is free to perform any operation.
Typically, the data for the time-varying parameters is read from a numpy array or obtained as a function of the current time.

The function tvp_fun can now be treated similarly to a variable in the current python scope.
The final step of the process is to pass this function with do_mpc.controller.MPC.set_tvp_fun():

mpc.set_tvp_fun(tvp_fun)

The configuration of the MPC controller is thus completed.

MHE configuration

The MHE configuration of the time-varying parameters is equivalent to the MPC configuration shown above.

Simulator configuration

The simulator also needs to be adapted for time-varying parameters
because we cannot evaluate the previously introduced ODE without a numerical value for
temperature_external.

The logic is the same as for the MPC controller and MHE estimator: We get the tvp_template with do_mpc.simulator.Simulator.get_tvp_template()
define a function tvp_fun and pass it to the simulator with do_mpc.simulator.Simulator.set_tvp_fun()

The configuration of the simulator is significantly easier however,
because we only need a single value of this parameter instead of a sequence:

Get simulator instance. The model contains _tvp.
simulator = do_mpc.simulator.Simulator(model)
Set some required parameters
simulator.set_param(t_step = 60)

Get the template
tvp_template = simulator.get_tvp_template()

Define the function (indexing is much simpler ...)
def tvp_fun(t_now):
 tvp_template['temperature_external'] = ...
 return tvp_template

Set the tvp_fun:
simulator.set_tvp_fun(tvp_fun)

Note

All time-varying parameters that are not explicitly set default to 0 in the tvp_template.
Thus, if some parameters are not required (e.g. they were introduced for the controller),
they don’t need to be set in the tvp_fun. This is shown here, where the simulator doesn’t need the set-point.

Note

From the perspective of the simulator there is no difference between time-varying parameters (_tvp) and regular parameters (_p).
The difference is important only for the MPC controller and MHE estimator.
These methods consider a finite sequence of future / past information, e.g. the weather, which can change over time.
Parameters, on the other hand, are constant over the entire horizon.

Feasibility issues

A common problem with MPC control and MHE estimation are feasibility issues
that arise when the solver cannot satisfy the constraints of the optimization problem.

Is the initial state feasible?

With MPC, a problem is infeasible if the initial state is infeasible.
This can happen in the close-loop application, where the state prediction
may vary from the true state evolution.
The following tips may be used to diagnose and fix this (and other) problems.

Which constraints are violated?

Check which bound constraints are violated. Retrieve the (infeasible) “optimal” solution and compare it to the bounds:

lb_bound_violation = mpc.opt_x_num.cat <= mpc.lb_opt_x
ub_bound_violation = mpc.opt_x_num.cat <= mpc.ub_opt_x

Retrieve the labels from the optimization variables and find those that are violating the constraints:

opt_labels = mpc.opt_x.labels()
labels_lb_viol =np.array(opt_labels)[np.where(lb_viol)[0]]
labels_ub_viol =np.array(opt_labels)[np.where(lb_viol)[0]]

The arrays labels_lb_viol and labels_ub_viol indicate which variables are problematic.

Use soft-constraints.

Some control problems, especially with economic objective will lead to trajectories operating close to (some) constraints.
Uncertainty or model inaccuracy may lead to constraint violations and thus infeasible (usually nonsense) solutions.
Using soft-constraints may help in this case.
Both the MPC controller and MHE estimator support this feature, which can be configured with (example for MPC):

mpc.set_nl_cons('cons_name', expression, upper_bound, soft_constraint=True)

See the full feature documentation here: do_mpc.optimizer.Optimizer.set_nl_cons

 API Reference

API Reference

Find below a table of all do-mpc modules.
Classes and functions of each module are shown on their respective page.

Core modules

The core modules are used to create the do-mpc control loop (click on elements to open documentation page):

digraph G {
 graph [fontname = "Monaco"];
 node [fontname = "Monaco", fontcolor="#404040", color="#bdbdbd"];
 edge [fontname = "Monaco", color="#707070"];

 Model [label="Model", href="../api/do_mpc.model.Model.html#model", target="_top", shape=box, style=filled]
 MPC [href="../api/do_mpc.controller.MPC.html#mpc", target="_top", shape=box, style=filled]
 Simulator [href="../api/do_mpc.simulator.Simulator.html#simulator", target="_top", shape=box, style=filled]
 MHE [href="../api/do_mpc.estimator.MHE.html#mhe", target="_top", shape=box, style=filled]
 Data_MPC [label="MPCData", href="../api/do_mpc.data.MPCData.html#mpcdata", target="_top", shape=box, style=filled]
 Data_Sim [label="Data", href="../api/do_mpc.data.Data.html#data", target="_top", shape=box, style=filled]
 Data_MHE [label="Data", href="../api/do_mpc.data.Data.html#data", target="_top", shape=box, style=filled]
 Graphics [label="Graphics", href="../api/do_mpc.graphics.Graphics.html#graphics", target="_top", shape=box, style=filled]

 Model -> MPC;
 Model -> Simulator;
 Model -> MHE;

 Model [shape=box, style=filled]

 subgraph cluster_loop {{
 rankdir=TB;
 rank=same;
 MPC -> Simulator [label="inputs"];
 Simulator -> MHE [label="meas."];
 MHE -> MPC [label="states"];
 }}

 MPC -> Data_MPC;
 Simulator -> Data_Sim;
 MHE -> Data_MHE;

 Data_MPC -> Graphics;
 Data_Sim -> Graphics;
 Data_MHE -> Graphics;

}

do-mpc control loop and interconnection of classes.

	model

	

	simulator

	

	optimizer

	

	controller

	

	estimator

	

	data

	

	graphics

	

Sampling tools

	samplingplanner

	

	sampler

	

	datahandler

	

For a quick introduction of the do-mpc sampling tools we are providing this video tutorial:

 model

model

Classes

	IteratedVariables

	Class to initiate properties and attributes for iterated variables.

	Model

	The do-mpc model class.

This page is auto-generated. Page source is not available on Github.

 IteratedVariables

IteratedVariables

	
class do_mpc.model.IteratedVariables

	Class to initiate properties and attributes for iterated variables.
This class is inherited to all iterating do-mpc classes and based on the Model.

Warning

This base class can not be used independently.

Attributes

	IteratedVariables.t0

	Current time marker of the class.

	IteratedVariables.u0

	Initial input and current iterate.

	IteratedVariables.x0

	Initial state and current iterate.

	IteratedVariables.z0

	Initial algebraic state and current iterate.

Methods

This page is auto-generated. Page source is not available on Github.

 t0

t0

Class attribute.

	
IteratedVariables.t0

	Current time marker of the class.
Use this property to set of query the time.

Set with int, float, numpy.ndarray or casadi.DM type.

This page is auto-generated. Page source is not available on Github.

 u0

u0

Class attribute.

	
IteratedVariables.u0

	Initial input and current iterate.
This is the numerical structure holding the information about the current input
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_u','heating', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.u0['heating', 0] # 0th element of variable
mpc.u0['heating'] # all elements of variable
mpc.u0['heating', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 x0

x0

Class attribute.

	
IteratedVariables.x0

	Initial state and current iterate.
This is the numerical structure holding the information about the current states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_x','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.x0['temperature', 0] # 0th element of variable
mpc.x0['temperature'] # all elements of variable
mpc.x0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 z0

z0

Class attribute.

	
IteratedVariables.z0

	Initial algebraic state and current iterate.
This is the numerical structure holding the information about the current algebraic states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_z','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.z0['temperature', 0] # 0th element of variable
mpc.z0['temperature'] # all elements of variable
mpc.z0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 Model

Model

	
class do_mpc.model.Model(model_type=None, symvar_type='SX')

	The do-mpc model class. This class holds the full model description and is at the core of
do_mpc.simulator.Simulator, do_mpc.controller.MPC and do_mpc.estimator.Estimator.
The Model class is created with setting the model_type (continuous or discrete).
A continous model consists of an underlying ordinary differential equation (ODE) or differential algebraic equation (DAE):

\[\begin{split}\dot{x}(t) &= f(x(t),u(t),z(t),p(t),p_{\text{tv}}(t)) + w(t),\\
0 &= g(x(t),u(t),z(t),p(t),p_{\text{tv}}(t))\\
y &= h(x(t),u(t),z(t),p(t),p_{\text{tv}}(t)) + v(t)\end{split}\]

whereas a discrete model consists of a difference equation:

\[\begin{split}x_{k+1} &= f(x_k,u_k,z_k,p_k,p_{\text{tv},k}) + w_k,\\
0 &= g(x_k,u_k,z_k,p_k,p_{\text{tv},k})\\
y_k &= h(x_k,u_k,z_k,p_k,p_{\text{tv},k}) + v_k\end{split}\]

The do-mpc model can be initiated with either SX or MX variable type.
We refer to the CasADi documentation on the difference of these two types.

Note

SX vs. MX in a nutshell: In general use SX variables (default).
If your model consists of scalar operations SX variables will be beneficial.
Your implementation will most likely only benefit from MX variables if you use large(r)-scale matrix-vector multiplications.

Note

The option symvar_type will be inherited to all derived classes (e.g. do_mpc.simulator.Simulator,
do_mpc.controller.MPC and do_mpc.estimator.Estimator).
All symbolic variables in these classes will be chosen respectively.

Configuration and setup:

Configuring and setting up the Model involves the following steps:

	Use set_variable() to introduce new variables to the model.

	Optionally introduce “auxiliary” expressions as functions of the previously defined variables with set_expression(). The expressions can be used for monitoring or be reused as constraints, the cost function etc.

	Optionally introduce measurement equations with set_meas(). The syntax is identical to set_expression(). By default state-feedback is assumed.

	Define the right-hand-side of the discrete or continuous model as a function of the previously defined variables with set_rhs(). This method must be called once for each introduced state.

	Call setup() to finalize the Model. No further changes are possible afterwards.

Note

All introduced model variables are accessible as Attributes of the Model.
Use these attributes to query to variables, e.g. to form the cost function in a seperate file for the MPC configuration.

	Parameters

	
	model_type (str) – Set if the model is discrete or continuous.

	symvar_type (str) – Set if the model is configured with CasADi SX or MX variables.

	Raises

	
	assertion – model_type must be string

	assertion – model_type must be either discrete or continuous

	
__getitem__(ind)

	The Model class supports the __getitem__ method,
which can be used to retrieve the model variables (see attribute list).

Query the states like this:
x = model.x
or like this:
x = model['x']

This also allows to retrieve multiple variables simultaneously:

x, u, z = model['x','u','z']

Attributes

	Model.aux

	Auxiliary expressions.

	Model.p

	Static parameters.

	Model.tvp

	Time-varying parameters.

	Model.u

	Inputs.

	Model.v

	Measurement noise.

	Model.w

	Process noise.

	Model.x

	Dynamic states.

	Model.y

	Measurements.

	Model.z

	Algebraic states.

Methods

	Model.set_alg

	Introduce new algebraic equation to model.

	Model.set_expression

	Introduce new expression to the model class.

	Model.set_meas

	Introduce new measurable output to the model class.

	Model.set_rhs

	Formulate the right hand side (rhs) of the ODE:

	Model.set_variable

	Introduce new variables to the model class.

	Model.setup

	Setup method must be called to finalize the modelling process.

This page is auto-generated. Page source is not available on Github.

 aux

aux

Class attribute.

	
Model.aux

	Auxiliary expressions.
CasADi symbolic structure, can be indexed with user-defined variable names.

Note

Expressions are introduced with Model.set_expression() Use this property only to query
variables.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_x','temperature', 4) # 4 states
dt = model.x['temperature',0]- model.x['temperature', 1]
model.set_expression('dtemp', dt)
Query:
model.aux['dtemp', 0] # 0th element of variable
model.aux['dtemp'] # all elements of variable

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

	Raises

	assertion – Cannot set aux directly Use set_expression instead.

This page is auto-generated. Page source is not available on Github.

 p

p

Class attribute.

	
Model.p

	Static parameters.
CasADi symbolic structure, can be indexed with user-defined variable names.

Note

Variables are introduced with Model.set_variable() Use this property only to query
variables.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_p','temperature', shape=(4,1))
Query:
model.p['temperature', 0] # 0th element of variable
model.p['temperature'] # all elements of variable
model.p['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

	Raises

	assertion – Cannot set model variables directly Use set_variable instead.

This page is auto-generated. Page source is not available on Github.

 tvp

tvp

Class attribute.

	
Model.tvp

	Time-varying parameters.
CasADi symbolic structure, can be indexed with user-defined variable names.

Note

Variables are introduced with Model.set_variable() Use this property only to query
variables.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_tvp','temperature', shape=(4,1))
Query:
model.tvp['temperature', 0] # 0th element of variable
model.tvp['temperature'] # all elements of variable
model.tvp['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

	Raises

	assertion – Cannot set model variables directly Use set_variable instead.

This page is auto-generated. Page source is not available on Github.

 u

u

Class attribute.

	
Model.u

	Inputs.
CasADi symbolic structure, can be indexed with user-defined variable names.

Note

Variables are introduced with Model.set_variable() Use this property only to query
variables.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_u','heating', shape=(4,1))
Query:
model.u['heating', 0] # 0th element of variable
model.u['heating'] # all elements of variable
model.u['heating', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

	Raises

	assertion – Cannot set model variables directly Use set_variable instead.

This page is auto-generated. Page source is not available on Github.

 v

v

Class attribute.

	
Model.v

	Measurement noise.
CasADi symbolic structure, can be indexed with user-defined variable names.

The measurement noise structure is created automatically, whenever the
Model.set_meas() method is called with the argument meas_noise = True.

Note

The measurement noise is used for the do_mpc.estimator.MHE and
can be used to simulate a disturbed system in the do_mpc.simulator.Simulator.

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

	Raises

	assertion – Cannot set v directly

This page is auto-generated. Page source is not available on Github.

 w

w

Class attribute.

	
Model.w

	Process noise.
CasADi symbolic structure, can be indexed with user-defined variable names.

The process noise structure is created automatically, whenever the
Model.set_rhs() method is called with the argument process_noise = True.

Note

The process noise is used for the do_mpc.estimator.MHE and
can be used to simulate a disturbed system in the do_mpc.simulator.Simulator.

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

	Raises

	assertion – Cannot set w directly

This page is auto-generated. Page source is not available on Github.

 x

x

Class attribute.

	
Model.x

	Dynamic states.
CasADi symbolic structure, can be indexed with user-defined variable names.

Note

Variables are introduced with Model.set_variable() Use this property only to query
variables.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_x','temperature', shape=(4,1))
Query:
model.x['temperature', 0] # 0th element of variable
model.x['temperature'] # all elements of variable
model.x['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

	Raises

	assertion – Cannot set model variables directly Use set_variable instead.

This page is auto-generated. Page source is not available on Github.

 y

y

Class attribute.

	
Model.y

	Measurements.
CasADi symbolic structure, can be indexed with user-defined variable names.

Note

Measured variables are introduced with Model.set_meas() Use this property only to query
variables.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_x','temperature', 4) # 4 states
model.set_meas('temperature', model.x['temperature',:2]) # first 2 measured
Query:
model.y['temperature', 0] # 0th element of variable
model.y['temperature'] # all elements of variable

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

	Raises

	assertion – Cannot set model variables directly Use set_meas instead.

This page is auto-generated. Page source is not available on Github.

 z

z

Class attribute.

	
Model.z

	Algebraic states.
CasADi symbolic structure, can be indexed with user-defined variable names.

Note

Variables are introduced with Model.set_variable() Use this property only to query
variables.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_z','temperature', shape=(4,1))
Query:
model.z['temperature', 0] # 0th element of variable
model.z['temperature'] # all elements of variable
model.z['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

	Raises

	assertion – Cannot set model variables directly Use set_variable instead.

This page is auto-generated. Page source is not available on Github.

 set_alg

set_alg

Class method.

	
do_mpc.model.Model.set_alg(self, expr_name, expr)

	Introduce new algebraic equation to model.

For the continous time model, the expression must be formulated as

\[0 = g(x(t),u(t),z(t),p(t),p_{\text{tv}}(t))\]

or for a discrete model:

\[0 = g(x_k,u_k,z_k,p_k,p_{\text{tv},k})\]

Note

For the introduced algebraic variables \(z \in \mathbb{R}^{n_z}\)
it is required to introduce exactly \(n_z\) algebraic equations.
Otherwise setup() will throw an error message.

	Parameters

	
	expr_name (string) – Name of the introduced expression

	expr (CasADi SX or MX) – CasADi SX or MX function depending on _x, _u, _z, _tvp, _p.

This page is auto-generated. Page source is not available on Github.

 set_expression

set_expression

Class method.

	
do_mpc.model.Model.set_expression(self, expr_name, expr)

	Introduce new expression to the model class. Expressions are not required but can be used
to extract further information from the model.
Expressions must be formulated with respect to _x, _u, _z, _tvp, _p.

Example:

Maybe you are interested in monitoring the product of two states?

Introduce two scalar states:
x_1 = model.set_variable('_x', 'x_1')
x_2 = model.set_variable('_x', 'x_2')

Introduce expression:
model.set_expression('x1x2', x_1*x_2)

This new expression x1x2 is then available in all do-mpc modules utilizing
this model instance. It can be set, e.g. as the cost function in do-mpc.controller.MPC
or simply used in a graphical representation of the simulated / controlled system.

	Parameters

	
	expr_name (string) – Arbitrary name for the given expression. Names are used for key word indexing.

	expr (CasADi SX or MX) – CasADi SX or MX function depending on _x, _u, _z, _tvp, _p.

	Raises

	
	assertion – expr_name must be str

	assertion – expr must be a casadi SX or MX type

	assertion – Cannot call after setup().

	Returns

	Returns the newly created expression. Expression can be used e.g. for the RHS.

	Return type

	casadi.SX

This page is auto-generated. Page source is not available on Github.

 set_meas

set_meas

Class method.

	
do_mpc.model.Model.set_meas(self, meas_name, expr, meas_noise=True)

	Introduce new measurable output to the model class.

\[y = h(x(t),u(t),z(t),p(t),p_{\text{tv}}(t)) + v(t)\]

or in case of discrete dynamics:

\[y_k = h(x_k,u_k,z_k,p_k,p_{\text{tv},k}) + v_k\]

By default, the model assumes state-feedback (all states are measured outputs).
Expressions must be formulated with respect to _x, _u, _z, _tvp, _p.

Be default, it is assumed that the measurements experience additive noise \(v_k\).
This can be deactivated for individual measured variables by changing the boolean variable
meas_noise to False.
Note that measurement noise is only meaningful for state-estimation and will not affect the controller.
Furthermore, it can be set with each do_mpc.simulator.Simulator call to obtain imperfect outputs.

Note

For moving horizon estimation it is suggested to declare all inputs (_u) and e.g. a subset of states (_x) as
measurable output. Some other MHE formulations treat inputs separately.

Note

It is often suggested to deactivate measurement noise for “measured” inputs (_u).
These can typically seen as certain variables.

Example:

Introduce states:
x_meas = model.set_variable('_x', 'x', 3) # 3 measured states (vector)
x_est = model.set_variable('_x', 'x', 3) # 3 estimated states (vector)
and inputs:
u = model.set_variable('_u', 'u', 2) # 2 inputs (vector)

define measurements:
model.set_meas('x_meas', x_meas)
model.set_meas('u', u)

	Parameters

	
	expr_name (string) – Arbitrary name for the given expression. Names are used for key word indexing.

	expr (CasADi SX or MX) – CasADi SX or MX function depending on _x, _u, _z, _tvp, _p.

	meas_noise (bool) – Set if the measurement equation is disturbed by additive noise.

	Raises

	
	assertion – expr_name must be str

	assertion – expr must be a casadi SX or MX type

	assertion – Cannot call after setup().

	Returns

	Returns the newly created measurement expression.

	Return type

	casadi.SX

This page is auto-generated. Page source is not available on Github.

 set_rhs

set_rhs

Class method.

	
do_mpc.model.Model.set_rhs(self, var_name, expr, process_noise=False)

	Formulate the right hand side (rhs) of the ODE:

\[\dot{x}(t) = f(x(t),u(t),z(t),p(t),p_{\text{tv}}(t)) + w(t),\]

or the update equation in case of discrete dynamics:

\[x_{k+1} = f(x_k,u_k,z_k,p_k,p_{\text{tv},k}) + w_k,\]

Each defined state variable must have a respective equation (of matching dimension)
for the rhs. Match the rhs with the state by choosing the corresponding names.
rhs must be formulated with respect to _x, _u, _z, _tvp, _p.

Example:

tank_level = model.set_variable('states', 'tank_level')
tank_temp = model.set_variable('states', 'tank_temp')

tank_level_next = 0.5*tank_level
tank_temp_next = ...

model.set_rhs('tank_level', tank_level_next)
model.set_rhs('tank_temp', tank_temp_next)

Optionally, set process_noise = True to introduce an additive process noise variable.
This is meaningful for the do_mpc.estimator.MHE (See do_mpc.estimator.MHE.set_default_objective() for more details).
Furthermore, it can be set with each do_mpc.simulator.Simulator call to obtain imperfect (realistic) simulation results.

	Parameters

	
	var_name (string) – Reference to previously introduced state names (with Model.set_variable())

	expr (CasADi SX or MX) – CasADi SX or MX function depending on _x, _u, _z, _tvp, _p.

	process_noise (boolean) – (optional) Make the respective state variable non-deterministic.

	Raises

	
	assertion – var_name must be str

	assertion – expr must be a casadi SX or MX type

	assertion – var_name must refer to the previously defined states

	assertion – Cannot call after :py:func`setup`.

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 set_variable

set_variable

Class method.

	
do_mpc.model.Model.set_variable(self, var_type, var_name, shape=(1, 1))

	Introduce new variables to the model class. Define variable type, name and shape (optional).

Example:

States struct (optimization variables):
C_a = model.set_variable(var_type='_x', var_name='C_a', shape=(1,1))
T_K = model.set_variable(var_type='_x', var_name='T_K', shape=(1,1))

Input struct (optimization variables):
Q_dot = model.set_variable(var_type='_u', var_name='Q_dot')

Fixed parameters:
alpha = model.set_variable(var_type='_p', var_name='alpha')

Note

var_type allows a shorthand notation e.g. _x which is equivalent to states.

	Parameters

	
	var_type (string) – Declare the type of the variable. The following types are valid (long or short name is possible):

	Long name

	short name

	Remark

	states

	_x

	Required

	inputs

	_u

	optional

	algebraic

	_z

	Optional

	parameter

	_p

	Optional

	timevarying_parameter

	_tvp

	Optional

	var_name – Set a user-defined name for the parameter. The names are reused throughout do_mpc.

	shape (int or tuple of length 2.) – Shape of the current variable (optional), defaults to 1.

	Raises

	
	assertion – var_type must be string

	assertion – var_name must be string

	assertion – shape must be tuple or int

	assertion – Cannot call after setup().

	Returns

	Returns the newly created symbolic variable.

	Return type

	casadi.SX

This page is auto-generated. Page source is not available on Github.

 setup

setup

Class method.

	
do_mpc.model.Model.setup(self)

	Setup method must be called to finalize the modelling process.
All required model variables must be declared.
The right hand side expression for _x must have been set with set_rhs().

Sets default measurement function (state feedback) if set_meas() was not called.

Warning

After calling setup(), the model is locked and no further variables,
expressions etc. can be set.

	Raises

	assertion – Definition of right hand side (rhs) is incomplete

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 simulator

simulator

Classes

	Simulator

	A class for simulating systems.

This page is auto-generated. Page source is not available on Github.

 Simulator

Simulator

	
class do_mpc.simulator.Simulator(model)

	A class for simulating systems. Discrete-time and continuous systems can be considered.

do-mpc uses the CasADi interface to popular state-of-the-art tools such as Sundials CVODES [https://computing.llnl.gov/projects/sundials]
for the integration of ODE/DAE equations.

Configuration and setup:

Configuring and setting up the simulator involves the following steps:

	Set parameters with set_param(), e.g. the sampling time.

	Set parameter function with get_p_template() and set_p_fun().

	Set time-varying parameter function with get_tvp_template() and set_tvp_fun().

	Setup simulator with setup().

During runtime, call the simulator make_step() method with current input (u).
This computes the next state of the system and the respective measurement.
Optionally, pass (sampled) random variables for the process w and measurement noise v (if they were defined in :py:class`do_mpc.model.Model`)

Attributes

	Simulator.t0

	Current time marker of the class.

	Simulator.u0

	Initial input and current iterate.

	Simulator.x0

	Initial state and current iterate.

	Simulator.z0

	Initial algebraic state and current iterate.

Methods

	Simulator.get_p_template

	Obtain output template for set_p_fun().

	Simulator.get_tvp_template

	Obtain the output template for set_tvp_fun().

	Simulator.make_step

	Main method of the simulator class during control runtime.

	Simulator.reset_history

	Reset the history of the simulator.

	Simulator.set_initial_guess

	Initial guess for DAE variables.

	Simulator.set_p_fun

	Method to set the function which gives the values of the parameters.

	Simulator.set_param

	Set the parameters for the simulator.

	Simulator.set_tvp_fun

	Method to set the function which returns the values of the time-varying parameters.

	Simulator.setup

	Sets up the simulator and finalizes the simulator configuration.

	Simulator.simulate

	Call the CasADi simulator.

This page is auto-generated. Page source is not available on Github.

 t0

t0

Class attribute.

	
Simulator.t0

	Current time marker of the class.
Use this property to set of query the time.

Set with int, float, numpy.ndarray or casadi.DM type.

This page is auto-generated. Page source is not available on Github.

 u0

u0

Class attribute.

	
Simulator.u0

	Initial input and current iterate.
This is the numerical structure holding the information about the current input
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_u','heating', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.u0['heating', 0] # 0th element of variable
mpc.u0['heating'] # all elements of variable
mpc.u0['heating', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 x0

x0

Class attribute.

	
Simulator.x0

	Initial state and current iterate.
This is the numerical structure holding the information about the current states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_x','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.x0['temperature', 0] # 0th element of variable
mpc.x0['temperature'] # all elements of variable
mpc.x0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 z0

z0

Class attribute.

	
Simulator.z0

	Initial algebraic state and current iterate.
This is the numerical structure holding the information about the current algebraic states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_z','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.z0['temperature', 0] # 0th element of variable
mpc.z0['temperature'] # all elements of variable
mpc.z0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 get_p_template

get_p_template

Class method.

	
do_mpc.simulator.Simulator.get_p_template(self)

	Obtain output template for set_p_fun().
Use this method in conjunction with set_p_fun()
to define the function for retrieving the parameters at each sampling time.

See set_p_fun() for more details.

	Returns

	numerical CasADi structure

	Return type

	struct_SX

This page is auto-generated. Page source is not available on Github.

 get_tvp_template

get_tvp_template

Class method.

	
do_mpc.simulator.Simulator.get_tvp_template(self)

	Obtain the output template for set_tvp_fun().
Use this method in conjunction with set_tvp_fun()
to define the function for retrieving the time-varying parameters at each sampling time.

	Returns

	numerical CasADi structure

	Return type

	struct_SX

This page is auto-generated. Page source is not available on Github.

 make_step

make_step

Class method.

	
do_mpc.simulator.Simulator.make_step(self, u0, v0=None, w0=None)

	Main method of the simulator class during control runtime. This method is called at each timestep
and computes the next state or the current control input u0. The method returns the resulting measurement,
as defined in do_mpc.model.Model.set_meas.

The initial state x0 is stored as a class attribute. Use this attribute x0 to change the initial state.
It is also possible to supply an initial guess for the algebraic states through the attribute z0 and by calling
set_initial_guess().

Finally, the method can be called with values for the process noise w0 and the measurement noise v0
that were (optionally) defined in the do_mpc.model.Model.
Typically, these values should be sampled from a random distribution, e.g. np.random.randn for a random normal distribution.

The method prepares the simulator by setting the current parameters, calls simulator.simulate()
and updates the do_mpc.data object.

	Parameters

	
	u0 (numpy.ndarray) – Current input to the system.

	v0 (numpy.ndarray (optional)) – Additive measurement noise

	w0 (numpy.ndarray (optional)) – Additive process noise

	Returns

	y_next

	Return type

	numpy.ndarray

This page is auto-generated. Page source is not available on Github.

 reset_history

reset_history

Class method.

	
do_mpc.simulator.Simulator.reset_history(self)

	Reset the history of the simulator.

This page is auto-generated. Page source is not available on Github.

 set_initial_guess

set_initial_guess

Class method.

	
do_mpc.simulator.Simulator.set_initial_guess(self)

	Initial guess for DAE variables.
Use the current class attribute z0 to create the initial guess for the DAE algebraic equations.

The simulator uses “warmstarting” to solve the continous/discrete DAE system by using the previously computed
algebraic states as an initial guess. Thus, this method is typically only invoked once.

Warning

If no initial values for z0 were supplied during setup, they default to zero.

This page is auto-generated. Page source is not available on Github.

 set_p_fun

set_p_fun

Class method.

	
do_mpc.simulator.Simulator.set_p_fun(self, p_fun)

	Method to set the function which gives the values of the parameters.
This function must return a CasADi structure which can be obtained with get_p_template().

Example:

In the do_mpc.model.Model we have defined the following parameters:

Theta_1 = model.set_variable('parameter', 'Theta_1')
Theta_2 = model.set_variable('parameter', 'Theta_2')
Theta_3 = model.set_variable('parameter', 'Theta_3')

To integrate the ODE or evaluate the discrete dynamics, the simulator needs
to obtain the numerical values of these parameters at each timestep.
In the most general case, these values can change,
which is why a function must be supplied that can be evaluted at each timestep to obtain the current values.

do-mpc requires this function to have a specific return structure which we obtain first by calling:

p_template = simulator.get_p_template()

The parameter function can look something like this:

p_template['Theta_1'] = 2.25e-4
p_template['Theta_2'] = 2.25e-4
p_template['Theta_3'] = 2.25e-4

def p_fun(t_now):
 return p_template

simulator.set_p_fun(p_fun)

which results in constant parameters.

A more “interesting” variant could be this random-walk:

p_template['Theta_1'] = 2.25e-4
p_template['Theta_2'] = 2.25e-4
p_template['Theta_3'] = 2.25e-4

def p_fun(t_now):
 p_template['Theta_1'] += 1e-6*np.random.randn()
 p_template['Theta_2'] += 1e-6*np.random.randn()
 p_template['Theta_3'] += 1e-6*np.random.randn()
 return p_template

	Parameters

	p_fun (python function) – A function which gives the values of the parameters

	Raises

	assert – p must have the right structure

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 set_param

set_param

Class method.

	
do_mpc.simulator.Simulator.set_param(self, **kwargs)

	Set the parameters for the simulator. Setting the simulation time step t_step is necessary for setting up the simulator via setup_simulator.

	Parameters

	
	integration_tool (string) – Sets which integration tool is used, defaults to cvodes (only continuous)

	abstol (float) – gives the maximum allowed absolute tolerance for the integration, defaults to 1e-10 (only continuous)

	reltol – gives the maximum allowed relative tolerance for the integration, defaults to 1e-10 (only continuous)

	t_step (float) – Sets the time step for the simulation

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 set_tvp_fun

set_tvp_fun

Class method.

	
do_mpc.simulator.Simulator.set_tvp_fun(self, tvp_fun)

	Method to set the function which returns the values of the time-varying parameters.
This function must return a CasADi structure which can be obtained with get_tvp_template().

In the do_mpc.model.Model we have defined the following parameters:

a = model.set_variable('_tvp', 'a')

The integrate the ODE or evaluate the discrete dynamics, the simulator needs
to obtain the numerical values of these parameters at each timestep.
In the most general case, these values can change,
which is why a function must be supplied that can be evaluted at each timestep to obtain the current values.

do-mpc requires this function to have a specific return structure which we obtain first by calling:

tvp_template = simulator.get_tvp_template()

The time-varying parameter function can look something like this:

def tvp_fun(t_now):
 tvp_template['a'] = 3
 return tvp_template

simulator.set_tvp_fun(tvp_fun)

which results in constant parameters.

Note

From the perspective of the simulator there is no difference between
time-varying parameters and regular parameters. The difference is important only
for the MPC controller and MHE estimator. These methods consider a finite sequence
of future / past information, e.g. the weather, which can change over time.
Parameters, on the other hand, are constant over the entire horizon.

	Parameters

	tvp_fun (function) – Function which gives the values of the time-varying parameters

	Raises

	
	assertion – tvp_fun has incorrect return type.

	assertion – Incorrect output of tvp_fun. Use get_tvp_template to obtain the required structure.

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 setup

setup

Class method.

	
do_mpc.simulator.Simulator.setup(self)

	Sets up the simulator and finalizes the simulator configuration.
Only after the setup, the make_step() method becomes available.

	Raises

	assertion – t_step must be set

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 simulate

simulate

Class method.

	
do_mpc.simulator.Simulator.simulate(self)

	Call the CasADi simulator.

Warning

simulate() can be used as part of the public API but is typically
called from within make_step() which wraps this method and sets the
required values to the sim_x_num and sim_p_num structures automatically.

Numerical values for sim_x_num and sim_p_num need to be provided beforehand
in order to simulate the system for one time step:

	states sim_c_num['_x']

	algebraic states sim_z_num['_z']

	inputs sim_p_num['_u']

	parameter sim_p_num['_p']

	time-varying parameters sim_p_num['_tvp']

The function returns the new state of the system.

	Returns

	x_new

	Return type

	numpy array

This page is auto-generated. Page source is not available on Github.

 optimizer

optimizer

Classes

	Optimizer

	The base clase for the optimization based state estimation (MHE) and predictive controller (MPC).

This page is auto-generated. Page source is not available on Github.

 Optimizer

Optimizer

	
class do_mpc.optimizer.Optimizer

	The base clase for the optimization based state estimation (MHE) and predictive controller (MPC).
This class establishes the jointly used attributes, methods and properties.

Warning

The Optimizer base class can not be used independently.

Attributes

	Optimizer.bounds

	Query and set bounds of the optimization variables.

	Optimizer.nlp_cons

	Query and modify (symbolically) the NLP constraints.

	Optimizer.nlp_cons_lb

	Query and modify the lower bounds of the nlp_cons.

	Optimizer.nlp_cons_ub

	Query and modify the upper bounds of the nlp_cons.

	Optimizer.nlp_obj

	Query and modify (symbolically) the NLP objective function.

	Optimizer.scaling

	Query and set scaling of the optimization variables.

Methods

	Optimizer.create_nlp

	Create the optimization problem.

	Optimizer.get_tvp_template

	Obtain output template for set_tvp_fun().

	Optimizer.prepare_nlp

	Prepare the optimization problem.

	Optimizer.reset_history

	Reset the history of the optimizer.

	Optimizer.set_nl_cons

	Introduce new constraint to the class.

	Optimizer.set_tvp_fun

	Set function which returns time-varying parameters.

	Optimizer.solve

	Solves the optmization problem.

This page is auto-generated. Page source is not available on Github.

 bounds

bounds

Class attribute.

	
Optimizer.bounds

	Query and set bounds of the optimization variables.
The bounds() method is an indexed property, meaning
getting and setting this property requires an index and calls this function.
The power index (elements are separated by commas) must contain atleast the following elements:

	order

	index name

	valid options

	1

	bound type

	lower and upper

	2

	variable type

	_x, _u and _z (and _p_est for MHE)

	3

	variable name

	Names defined in do_mpc.model.Model.

Further indices are possible (but not neccessary) when the referenced variable is a vector or matrix.

Example:

Set with:
optimizer.bounds['lower','_x', 'phi_1'] = -2*np.pi
optimizer.bounds['upper','_x', 'phi_1'] = 2*np.pi

Query with:
optimizer.bounds['lower','_x', 'phi_1']

This page is auto-generated. Page source is not available on Github.

 nlp_cons

nlp_cons

Class attribute.

	
Optimizer.nlp_cons

	Query and modify (symbolically) the NLP constraints.
Use the variables in opt_x and opt_p.

Prior to calling create_nlp() this attribute returns a list of symbolic constraints.
After calling create_nlp() this attribute returns the concatenation of this list
and the attribute cannot be altered anymore.

It is advised to append to the current list of nlp_cons:

mpc.prepare_nlp()

Create new constraint: Input at timestep 0 and 1 must be identical.
extra_cons = mpc.opt_x['_u', 0, 0]-mpc.opt_x['_u',1, 0]
mpc.nlp_cons.append(
 extra_cons
)

Create appropriate upper and lower bound (here they are both 0 to create an equality constraint)
mpc.nlp_cons_lb.append(np.zeros(extra_cons.shape))
mpc.nlp_cons_ub.append(np.zeros(extra_cons.shape))

mpc.create_nlp()

See the documentation of opt_x and opt_p on how to query these attributes.

Warning

This is a VERY low level feature and should be used with extreme caution.
It is easy to break the code.

Be especially careful NOT to accidentially overwrite the default objective.

Note

Modifications must be done after calling prepare_nlp()
and before calling create_nlp()

This page is auto-generated. Page source is not available on Github.

 nlp_cons_lb

nlp_cons_lb

Class attribute.

	
Optimizer.nlp_cons_lb

	Query and modify the lower bounds of the nlp_cons.

Prior to calling create_nlp() this attribute returns a list of lower bounds
matching the list of constraints obtained with nlp_cons.
After calling create_nlp() this attribute returns the concatenation of this list.

Values for lower (and upper) bounds MUST be added when adding new constraints to nlp_cons.

Warning

This is a VERY low level feature and should be used with extreme caution.
It is easy to break the code.

Note

Modifications must be done after calling prepare_nlp()

This page is auto-generated. Page source is not available on Github.

 nlp_cons_ub

nlp_cons_ub

Class attribute.

	
Optimizer.nlp_cons_ub

	Query and modify the upper bounds of the nlp_cons.

Prior to calling create_nlp() this attribute returns a list of upper bounds
matching the list of constraints obtained with nlp_cons.
After calling create_nlp() this attribute returns the concatenation of this list.

Values for upper (and lower) bounds MUST be added when adding new constraints to nlp_cons.

Warning

This is a VERY low level feature and should be used with extreme caution.
It is easy to break the code.

Note

Modifications must be done after calling prepare_nlp()

This page is auto-generated. Page source is not available on Github.

 nlp_obj

nlp_obj

Class attribute.

	
Optimizer.nlp_obj

	Query and modify (symbolically) the NLP objective function.
Use the variables in opt_x and opt_p.

It is advised to add to the current objective, e.g.:

mpc.prepare_nlp()
Modify the objective
mpc.nlp_obj += sum1(vertcat(*mpc.opt_x['_x', -1, 0])**2)
Finish creating the NLP
mpc.create_nlp()

See the documentation of opt_x and opt_p on how to query these attributes.

Warning

This is a VERY low level feature and should be used with extreme caution.
It is easy to break the code.

Be especially careful NOT to accidentially overwrite the default objective.

Note

Modifications must be done after calling prepare_nlp()
and before calling create_nlp()

This page is auto-generated. Page source is not available on Github.

 scaling

scaling

Class attribute.

	
Optimizer.scaling

	Query and set scaling of the optimization variables.
The Optimizer.scaling() method is an indexed property, meaning
getting and setting this property requires an index and calls this function.
The power index (elements are seperated by comas) must contain atleast the following elements:

	order

	index name

	valid options

	1

	variable type

	_x, _u and _z (and _p_est for MHE)

	2

	variable name

	Names defined in do_mpc.model.Model.

Further indices are possible (but not neccessary) when the referenced variable is a vector or matrix.

Example:

Set with:
optimizer.scaling['_x', 'phi_1'] = 2
optimizer.scaling['_x', 'phi_2'] = 2

Query with:
optimizer.scaling['_x', 'phi_1']

Scaling factors \(a\) affect the MHE / MPC optimization problem. The optimization variables are scaled variables:

\[\bar\phi = \frac{\phi}{a_{\phi}} \quad \forall \phi \in [x, u, z, p_{\text{est}}]\]

Scaled variables are used to formulate the bounds \(\bar\phi_{lb} \leq \bar\phi_{ub}\)
and for the evaluation of the ODE. For the objective function and the nonlinear constraints
the unscaled variables are used. The algebraic equations are also not scaled.

Note

Scaling the optimization problem is suggested when states and / or inputs take on values
which differ by orders of magnitude.

This page is auto-generated. Page source is not available on Github.

 create_nlp

create_nlp

Class method.

	
do_mpc.optimizer.Optimizer.create_nlp(self)

	Create the optimization problem.
Typically, this method is called internally from setup().

Users should only call this method if they intend to modify the objective with nlp_obj,
the constraints with nlp_cons, nlp_cons_lb and nlp_cons_ub.

To finish the setup process, users MUST call create_nlp() afterwards.

Note

Do NOT call setup() if you intend to go the manual route with prepare_nlp() and create_nlp().

Note

Only AFTER calling prepare_nlp() the previously mentionned attributes
nlp_obj, nlp_cons, nlp_cons_lb, nlp_cons_ub
become available.

This page is auto-generated. Page source is not available on Github.

 get_tvp_template

get_tvp_template

Class method.

	
do_mpc.optimizer.Optimizer.get_tvp_template(self)

	Obtain output template for set_tvp_fun().

The method returns a structured object with n_horizon+1 elements,
and a set of time-varying parameters (as defined in do_mpc.model.Model)
for each of these instances. The structure is initialized with all zeros.
Use this object to define values of the time-varying parameters.

This structure (with numerical values) should be used as the output of the tvp_fun function which is set to the class with set_tvp_fun().
Use the combination of get_tvp_template() and set_tvp_fun().

Example:

in model definition:
alpha = model.set_variable(var_type='_tvp', var_name='alpha')
beta = model.set_variable(var_type='_tvp', var_name='beta')

...
in optimizer configuration:
tvp_temp_1 = optimizer.get_tvp_template()
tvp_temp_1['_tvp', :] = np.array([1,1])

tvp_temp_2 = optimizer.get_tvp_template()
tvp_temp_2['_tvp', :] = np.array([0,0])

def tvp_fun(t_now):
 if t_now<10:
 return tvp_temp_1
 else:
 tvp_temp_2

optimizer.set_tvp_fun(tvp_fun)

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 prepare_nlp

prepare_nlp

Class method.

	
do_mpc.optimizer.Optimizer.prepare_nlp(self)

	Prepare the optimization problem.
Typically, this method is called internally from setup().

Users should only call this method if they intend to modify the objective with nlp_obj,
the constraints with nlp_cons, nlp_cons_lb and nlp_cons_ub.

To finish the setup process, users MUST call create_nlp() afterwards.

Note

Do NOT call setup() if you intend to go the manual route with prepare_nlp() and create_nlp().

Note

Only AFTER calling prepare_nlp() the previously mentionned attributes
nlp_obj, nlp_cons, nlp_cons_lb, nlp_cons_ub
become available.

This page is auto-generated. Page source is not available on Github.

 reset_history

reset_history

Class method.

	
do_mpc.optimizer.Optimizer.reset_history(self)

	Reset the history of the optimizer.
All data from the do_mpc.data.Data instance is removed.

This page is auto-generated. Page source is not available on Github.

 set_nl_cons

set_nl_cons

Class method.

	
do_mpc.optimizer.Optimizer.set_nl_cons(self, expr_name, expr, ub=inf, soft_constraint=False, penalty_term_cons=1, maximum_violation=inf)

	Introduce new constraint to the class. Further constraints are optional.
Expressions must be formulated with respect to _x, _u, _z, _tvp, _p.
They are implemented as:

\[m(x,u,z,p_{\text{tv}}, p) \leq m_{\text{ub}}\]

Setting the flag soft_constraint=True will introduce slack variables \(\epsilon\), such that:

\[\begin{split}m(x,u,z,p_{\text{tv}}, p)-\epsilon &\leq m_{\text{ub}},\\
0 &\leq \epsilon \leq \epsilon_{\text{max}},\end{split}\]

Slack variables are added to the cost function and multiplied with the supplied penalty term.
This formulation makes constraints soft, meaning that a certain violation is tolerated and does not lead to infeasibility.
Typically, high values for the penalty are suggested to avoid significant violation of the constraints.

	Parameters

	
	expr_name (string) – Arbitrary name for the given expression. Names are used for key word indexing.

	expr (CasADi SX or MX) – CasADi SX or MX function depending on _x, _u, _z, _tvp, _p.

	Raises

	
	assertion – expr_name must be str

	assertion – expr must be a casadi SX or MX type

	Returns

	Returns the newly created expression. Expression can be used e.g. for the RHS.

	Return type

	casadi.SX or casadi.MX

This page is auto-generated. Page source is not available on Github.

 set_tvp_fun

set_tvp_fun

Class method.

	
do_mpc.optimizer.Optimizer.set_tvp_fun(self, tvp_fun)

	Set function which returns time-varying parameters.

The tvp_fun is called at each optimization step to get the current prediction of the time-varying parameters.
The supplied function must be callable with the current time as the only input. Furthermore, the function must return
a CasADi structured object which is based on the horizon and on the model definition. The structure can be obtained with
get_tvp_template().

Example:

in model definition:
alpha = model.set_variable(var_type='_tvp', var_name='alpha')
beta = model.set_variable(var_type='_tvp', var_name='beta')

...
in optimizer configuration:
tvp_temp_1 = optimizer.get_tvp_template()
tvp_temp_1['_tvp', :] = np.array([1,1])

tvp_temp_2 = optimizer.get_tvp_template()
tvp_temp_2['_tvp', :] = np.array([0,0])

def tvp_fun(t_now):
 if t_now<10:
 return tvp_temp_1
 else:
 tvp_temp_2

optimizer.set_tvp_fun(tvp_fun)

Note

The method set_tvp_fun(). must be called prior to setup IF time-varying parameters are defined in the model.
It is not required to call the method if no time-varying parameters are defined.

	Parameters

	tvp_fun (function) – Function that returns the predicted tvp values at each timestep. Must have single input (float) and return a structure3.DMStruct (obtained with get_tvp_template()).

This page is auto-generated. Page source is not available on Github.

 solve

solve

Class method.

	
do_mpc.optimizer.Optimizer.solve(self)

	Solves the optmization problem.

The current problem is defined by the parameters in the
opt_p_num CasADi structured Data.

Typically, opt_p_num is prepared for the current iteration in the make_step() method.
It is, however, valid and possible to directly set paramters in opt_p_num before calling solve().

The method updates the opt_p_num and opt_x_num attributes of the class.
By resetting opt_x_num to the current solution, the method implicitly
enables warmstarting the optimizer for the next iteration, since this vector is always used as the initial guess.

Warning

The method is part of the public API but it is generally not advised to use it.
Instead we recommend to call make_step() at each iterations, which acts as a wrapper
for solve().

	Raises

	asssertion – Optimizer was not setup yet.

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 controller

controller

Classes

	MPC

	Model predictive controller.

This page is auto-generated. Page source is not available on Github.

 MPC

MPC

	
class do_mpc.controller.MPC(model)

	Model predictive controller.

For general information on model predictive control, please read our background article.

The MPC controller extends the do_mpc.optimizer.Optimizer base class
(which is also used for the do_mpc.estimator.MHE estimator).

Use this class to configure and run the MPC controller
based on a previously configured do_mpc.model.Model instance.

Configuration and setup:

Configuring and setting up the MPC controller involves the following steps:

	Use set_param() to configure the MPC instance.

	Set the objective of the control problem with set_objective() and set_rterm()

	Set upper and lower bounds with bounds (optional).

	Set further (non-linear) constraints with set_nl_cons() (optional).

	Use the low-level API (get_p_template() and set_p_fun()) or high level API (set_uncertainty_values()) to create scenarios for robust MPC (optional).

	Use get_tvp_template() and set_tvp_fun() to create a method to obtain new time-varying parameters at each iteration.

	To finalize the class configuration there are two routes. The default approach is to call setup(). For deep customization use the combination of prepare_nlp() and create_nlp(). See graph below for an illustration of the process.

digraph G {
 graph [fontname = "helvetica"];
 rankdir=LR;

 subgraph cluster_main {
 node [fontname = "helvetica", shape=box, fontcolor="#404040", color="#707070"];
 edge [fontname = "helvetica", color="#707070"];

 start [label="Two ways to setup"];
 setup [label="setup", href="../api/do_mpc.controller.MPC.setup.html", target="_top", fontname = "Consolas"];
 create_nlp [label="create_nlp", href="../api/do_mpc.controller.MPC.create_nlp.html", target="_top", fontname = "Consolas"];
 process [label="Modify NLP"];
 prepare_nlp [label="prepare_nlp", href="../api/do_mpc.controller.MPC.prepare_nlp.html", target="_top", fontname = "Consolas"];
 finish [label="Configured MPC class"]
 start -> setup, prepare_nlp;
 prepare_nlp -> process;
 process -> create_nlp;
 setup, create_nlp -> finish;
 color=none;
 }

 subgraph cluster_modification {
 rankdir=TB;
 node [fontname = "helvetica", shape=box, fontcolor="#404040", color="#707070"];
 edge [fontname = "helvetica", color="#707070"];
 opt_x [label="opt_x", href="../api/do_mpc.controller.MPC.opt_x.html", target="_top", fontname = "Consolas"];
 opt_p [label="opt_p", href="../api/do_mpc.controller.MPC.opt_p.html", target="_top", fontname = "Consolas"];
 nlp_cons [label="nlp_cons", href="../api/do_mpc.controller.MPC.nlp_cons.html", target="_top", fontname = "Consolas"];
 nlp_obj [label="nlp_obj", href="../api/do_mpc.controller.MPC.nlp_obj.html", target="_top", fontname = "Consolas"];

 opt_x -> nlp_cons, nlp_obj;
 opt_p -> nlp_cons, nlp_obj;

 label = "Attributes to modify the NLP.";
 color=black;
 }

 nlp_cons -> process;
 nlp_obj -> process;
}

Route to setting up the MPC class.

Warning

Before running the controller, make sure to supply a valid initial guess for all optimized variables (states, algebraic states and inputs).
Simply set the initial values of x0, z0 and u0 and then call set_initial_guess().

To take full control over the initial guess, modify the values of opt_x_num.

During runtime call make_step() with the current state \(x\) to obtain the optimal control input \(u\).

Attributes

	MPC.bounds

	Query and set bounds of the optimization variables.

	MPC.nlp_cons

	Query and modify (symbolically) the NLP constraints.

	MPC.nlp_cons_lb

	Query and modify the lower bounds of the nlp_cons.

	MPC.nlp_cons_ub

	Query and modify the upper bounds of the nlp_cons.

	MPC.nlp_obj

	Query and modify (symbolically) the NLP objective function.

	MPC.opt_p

	Full structure of (symbolic) MPC parameters.

	MPC.opt_p_num

	Full MPC parameter vector.

	MPC.opt_x

	Full structure of (symbolic) MPC optimization variables.

	MPC.opt_x_num

	Full MPC solution and initial guess.

	MPC.scaling

	Query and set scaling of the optimization variables.

	MPC.t0

	Current time marker of the class.

	MPC.terminal_bounds

	Query and set the terminal bounds for the states.

	MPC.u0

	Initial input and current iterate.

	MPC.x0

	Initial state and current iterate.

	MPC.z0

	Initial algebraic state and current iterate.

Methods

	MPC.create_nlp

	Create the optimization problem.

	MPC.get_p_template

	Obtain output template for set_p_fun().

	MPC.get_tvp_template

	Obtain output template for set_tvp_fun().

	MPC.make_step

	Main method of the class during runtime.

	MPC.prepare_nlp

	Prepare the optimization problem.

	MPC.reset_history

	Reset the history of the optimizer.

	MPC.set_initial_guess

	Initial guess for optimization variables.

	MPC.set_nl_cons

	Introduce new constraint to the class.

	MPC.set_objective

	Sets the objective of the optimal control problem (OCP).

	MPC.set_p_fun

	Set function which returns parameters.

	MPC.set_param

	Set the parameters of the MPC class.

	MPC.set_rterm

	Set the penality factor for the inputs.

	MPC.set_tvp_fun

	Set function which returns time-varying parameters.

	MPC.set_uncertainty_values

	Define scenarios for the uncertain parameters.

	MPC.setup

	Setup the MPC class.

	MPC.solve

	Solves the optmization problem.

This page is auto-generated. Page source is not available on Github.

 bounds

bounds

Class attribute.

	
MPC.bounds

	Query and set bounds of the optimization variables.
The bounds() method is an indexed property, meaning
getting and setting this property requires an index and calls this function.
The power index (elements are separated by commas) must contain atleast the following elements:

	order

	index name

	valid options

	1

	bound type

	lower and upper

	2

	variable type

	_x, _u and _z (and _p_est for MHE)

	3

	variable name

	Names defined in do_mpc.model.Model.

Further indices are possible (but not neccessary) when the referenced variable is a vector or matrix.

Example:

Set with:
optimizer.bounds['lower','_x', 'phi_1'] = -2*np.pi
optimizer.bounds['upper','_x', 'phi_1'] = 2*np.pi

Query with:
optimizer.bounds['lower','_x', 'phi_1']

This page is auto-generated. Page source is not available on Github.

 nlp_cons

nlp_cons

Class attribute.

	
MPC.nlp_cons

	Query and modify (symbolically) the NLP constraints.
Use the variables in opt_x and opt_p.

Prior to calling create_nlp() this attribute returns a list of symbolic constraints.
After calling create_nlp() this attribute returns the concatenation of this list
and the attribute cannot be altered anymore.

It is advised to append to the current list of nlp_cons:

mpc.prepare_nlp()

Create new constraint: Input at timestep 0 and 1 must be identical.
extra_cons = mpc.opt_x['_u', 0, 0]-mpc.opt_x['_u',1, 0]
mpc.nlp_cons.append(
 extra_cons
)

Create appropriate upper and lower bound (here they are both 0 to create an equality constraint)
mpc.nlp_cons_lb.append(np.zeros(extra_cons.shape))
mpc.nlp_cons_ub.append(np.zeros(extra_cons.shape))

mpc.create_nlp()

See the documentation of opt_x and opt_p on how to query these attributes.

Warning

This is a VERY low level feature and should be used with extreme caution.
It is easy to break the code.

Be especially careful NOT to accidentially overwrite the default objective.

Note

Modifications must be done after calling prepare_nlp()
and before calling create_nlp()

This page is auto-generated. Page source is not available on Github.

 nlp_cons_lb

nlp_cons_lb

Class attribute.

	
MPC.nlp_cons_lb

	Query and modify the lower bounds of the nlp_cons.

Prior to calling create_nlp() this attribute returns a list of lower bounds
matching the list of constraints obtained with nlp_cons.
After calling create_nlp() this attribute returns the concatenation of this list.

Values for lower (and upper) bounds MUST be added when adding new constraints to nlp_cons.

Warning

This is a VERY low level feature and should be used with extreme caution.
It is easy to break the code.

Note

Modifications must be done after calling prepare_nlp()

This page is auto-generated. Page source is not available on Github.

 nlp_cons_ub

nlp_cons_ub

Class attribute.

	
MPC.nlp_cons_ub

	Query and modify the upper bounds of the nlp_cons.

Prior to calling create_nlp() this attribute returns a list of upper bounds
matching the list of constraints obtained with nlp_cons.
After calling create_nlp() this attribute returns the concatenation of this list.

Values for upper (and lower) bounds MUST be added when adding new constraints to nlp_cons.

Warning

This is a VERY low level feature and should be used with extreme caution.
It is easy to break the code.

Note

Modifications must be done after calling prepare_nlp()

This page is auto-generated. Page source is not available on Github.

 nlp_obj

nlp_obj

Class attribute.

	
MPC.nlp_obj

	Query and modify (symbolically) the NLP objective function.
Use the variables in opt_x and opt_p.

It is advised to add to the current objective, e.g.:

mpc.prepare_nlp()
Modify the objective
mpc.nlp_obj += sum1(vertcat(*mpc.opt_x['_x', -1, 0])**2)
Finish creating the NLP
mpc.create_nlp()

See the documentation of opt_x and opt_p on how to query these attributes.

Warning

This is a VERY low level feature and should be used with extreme caution.
It is easy to break the code.

Be especially careful NOT to accidentially overwrite the default objective.

Note

Modifications must be done after calling prepare_nlp()
and before calling create_nlp()

This page is auto-generated. Page source is not available on Github.

 opt_p

opt_p

Class attribute.

	
MPC.opt_p

	Full structure of (symbolic) MPC parameters.

The attribute is a CasADi numeric structure with nested power indices.
It can be indexed as follows:

initial state:
opt_p['_x0', _x_name]
uncertain scenario parameters
opt_p['_p', scenario, _p_name]
time-varying parameters:
opt_p['_tvp', time_step, _tvp_name]
input at time k-1:
opt_p['_u_prev', time_step, scenario]

The names refer to those given in the do_mpc.model.Model configuration.
Further indices are possible, if the variables are itself vectors or matrices.

Warning

Do not tweak or overwrite this attribute unless you known what you are doing.

Note

The attribute is populated when calling setup() or prepare_nlp()

This page is auto-generated. Page source is not available on Github.

 opt_p_num

opt_p_num

Class attribute.

	
MPC.opt_p_num

	Full MPC parameter vector.

This attribute is used when calling the MPC solver to pass all required parameters,
including

	initial state

	uncertain scenario parameters

	time-varying parameters

	previous input sequence

do-mpc handles setting these parameters automatically in the make_step()
method. However, you can set these values manually and directly call solve().

The attribute is a CasADi numeric structure with nested power indices.
It can be indexed as follows:

initial state:
opt_p_num['_x0', _x_name]
uncertain scenario parameters
opt_p_num['_p', scenario, _p_name]
time-varying parameters:
opt_p_num['_tvp', time_step, _tvp_name]
input at time k-1:
opt_p_num['_u_prev', time_step, scenario]

The names refer to those given in the do_mpc.model.Model configuration.
Further indices are possible, if the variables are itself vectors or matrices.

Warning

Do not tweak or overwrite this attribute unless you known what you are doing.

Note

The attribute is populated when calling setup()

This page is auto-generated. Page source is not available on Github.

 opt_x

opt_x

Class attribute.

	
MPC.opt_x

	Full structure of (symbolic) MPC optimization variables.

The attribute is a CasADi symbolic structure with nested power indices.
It can be indexed as follows:

dynamic states:
opt_x['_x', time_step, scenario, collocation_point, _x_name]
algebraic states:
opt_x['_z', time_step, scenario, collocation_point, _z_name]
inputs:
opt_x['_u', time_step, scenario, _u_name]
slack variables for soft constraints:
opt_x['_eps', time_step, scenario, _nl_cons_name]

The names refer to those given in the do_mpc.model.Model configuration.
Further indices are possible, if the variables are itself vectors or matrices.

The attribute can be used to alter the objective function or constraints of the NLP.

How to query?

Querying the structure is more complicated than it seems at first look because of the scenario-tree used
for robust MPC. To obtain all collocation points for the finite element at time-step \(k\) and scenario \(b\) use:

horzcat(*[mpc.opt_x['_x',k,b,-1]]+mpc.opt_x['_x',k+1,b,:-1])

Due to the multi-stage formulation at any given time \(k\) we can have multiple future scenarios.
However, there is only exactly one scenario that lead to the current node in the tree.
Thus the collocation points associated to the finite element \(k\) lie in the past.

The concept is illustrated in the figure below:

[image: ../_images/collocation_points_scenarios.svg]

Note

The attribute opt_x carries the scaled values of all variables.

Note

The attribute is populated when calling setup() or prepare_nlp()

This page is auto-generated. Page source is not available on Github.

 opt_x_num

opt_x_num

Class attribute.

	
MPC.opt_x_num

	Full MPC solution and initial guess.

This is the core attribute of the MPC class.
It is used as the initial guess when solving the optimization problem
and then overwritten with the current solution.

The attribute is a CasADi numeric structure with nested power indices.
It can be indexed as follows:

dynamic states:
opt_x_num['_x', time_step, scenario, collocation_point, _x_name]
algebraic states:
opt_x_num['_z', time_step, scenario, collocation_point, _z_name]
inputs:
opt_x_num['_u', time_step, scenario, _u_name]
slack variables for soft constraints:
opt_x_num['_eps', time_step, scenario, _nl_cons_name]

The names refer to those given in the do_mpc.model.Model configuration.
Further indices are possible, if the variables are itself vectors or matrices.

The attribute can be used to manually set a custom initial guess or for debugging purposes.

How to query?

Querying the structure is more complicated than it seems at first look because of the scenario-tree used
for robust MPC. To obtain all collocation points for the finite element at time-step \(k\) and scenario \(b\) use:

horzcat(*[mpc.opt_x_num['_x',k,b,-1]]+mpc.opt_x_num['_x',k+1,b,:-1])

Due to the multi-stage formulation at any given time \(k\) we can have multiple future scenarios.
However, there is only exactly one scenario that lead to the current node in the tree.
Thus the collocation points associated to the finite element \(k\) lie in the past.

The concept is illustrated in the figure below:

[image: ../_images/collocation_points_scenarios.svg]

Note

The attribute opt_x_num carries the scaled values of all variables. See opt_x_num_unscaled
for the unscaled values (these are not used as the initial guess).

Warning

Do not tweak or overwrite this attribute unless you known what you are doing.

Note

The attribute is populated when calling setup()

This page is auto-generated. Page source is not available on Github.

 scaling

scaling

Class attribute.

	
MPC.scaling

	Query and set scaling of the optimization variables.
The Optimizer.scaling() method is an indexed property, meaning
getting and setting this property requires an index and calls this function.
The power index (elements are seperated by comas) must contain atleast the following elements:

	order

	index name

	valid options

	1

	variable type

	_x, _u and _z (and _p_est for MHE)

	2

	variable name

	Names defined in do_mpc.model.Model.

Further indices are possible (but not neccessary) when the referenced variable is a vector or matrix.

Example:

Set with:
optimizer.scaling['_x', 'phi_1'] = 2
optimizer.scaling['_x', 'phi_2'] = 2

Query with:
optimizer.scaling['_x', 'phi_1']

Scaling factors \(a\) affect the MHE / MPC optimization problem. The optimization variables are scaled variables:

\[\bar\phi = \frac{\phi}{a_{\phi}} \quad \forall \phi \in [x, u, z, p_{\text{est}}]\]

Scaled variables are used to formulate the bounds \(\bar\phi_{lb} \leq \bar\phi_{ub}\)
and for the evaluation of the ODE. For the objective function and the nonlinear constraints
the unscaled variables are used. The algebraic equations are also not scaled.

Note

Scaling the optimization problem is suggested when states and / or inputs take on values
which differ by orders of magnitude.

This page is auto-generated. Page source is not available on Github.

 t0

t0

Class attribute.

	
MPC.t0

	Current time marker of the class.
Use this property to set of query the time.

Set with int, float, numpy.ndarray or casadi.DM type.

This page is auto-generated. Page source is not available on Github.

 terminal_bounds

terminal_bounds

Class attribute.

	
MPC.terminal_bounds

	Query and set the terminal bounds for the states.
The terminal_bounds() method is an indexed property, meaning
getting and setting this property requires an index and calls this function.
The power index (elements are seperated by comas) must contain atleast the following elements:

	order

	index name

	valid options

	1

	bound type

	lower and upper

	2

	variable name

	Names defined in do_mpc.model.Model.

Further indices are possible (but not neccessary) when the referenced variable is a vector or matrix.

Example:

Set with:
optimizer.terminal_bounds['lower', 'phi_1'] = -2*np.pi
optimizer.terminal_bounds['upper', 'phi_1'] = 2*np.pi

Query with:
optimizer.terminal_bounds['lower', 'phi_1']

This page is auto-generated. Page source is not available on Github.

 u0

u0

Class attribute.

	
MPC.u0

	Initial input and current iterate.
This is the numerical structure holding the information about the current input
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_u','heating', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.u0['heating', 0] # 0th element of variable
mpc.u0['heating'] # all elements of variable
mpc.u0['heating', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 x0

x0

Class attribute.

	
MPC.x0

	Initial state and current iterate.
This is the numerical structure holding the information about the current states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_x','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.x0['temperature', 0] # 0th element of variable
mpc.x0['temperature'] # all elements of variable
mpc.x0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 z0

z0

Class attribute.

	
MPC.z0

	Initial algebraic state and current iterate.
This is the numerical structure holding the information about the current algebraic states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_z','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.z0['temperature', 0] # 0th element of variable
mpc.z0['temperature'] # all elements of variable
mpc.z0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 create_nlp

create_nlp

Class method.

	
do_mpc.controller.MPC.create_nlp(self)

	Create the optimization problem.
Typically, this method is called internally from setup().

Users should only call this method if they intend to modify the objective with nlp_obj,
the constraints with nlp_cons, nlp_cons_lb and nlp_cons_ub.

To finish the setup process, users MUST call create_nlp() afterwards.

Note

Do NOT call setup() if you intend to go the manual route with prepare_nlp() and create_nlp().

Note

Only AFTER calling prepare_nlp() the previously mentionned attributes
nlp_obj, nlp_cons, nlp_cons_lb, nlp_cons_ub
become available.

This page is auto-generated. Page source is not available on Github.

 get_p_template

get_p_template

Class method.

	
do_mpc.controller.MPC.get_p_template(self, n_combinations)

	Obtain output template for set_p_fun().

Low level API method to set user defined scenarios for robust multi-stage MPC by defining an arbitrary number
of combinations for the parameters defined in the model.
For more details on robust multi-stage MPC please read our background article.

The method returns a structured object which is
initialized with all zeros.
Use this object to define values of the parameters for an arbitrary number of scenarios (defined by n_combinations).

This structure (with numerical values) should be used as the output of the p_fun function
which is set to the class with set_p_fun().

Use the combination of get_p_template() and set_p_template() as a more adaptable alternative to set_uncertainty_values().

Note

We advice less experienced users to use set_uncertainty_values() as an alterntive way to configure the
scenario-tree for robust multi-stage MPC.

Example:

in model definition:
alpha = model.set_variable(var_type='_p', var_name='alpha')
beta = model.set_variable(var_type='_p', var_name='beta')

...
in MPC configuration:
n_combinations = 3
p_template = MPC.get_p_template(n_combinations)
p_template['_p',0] = np.array([1,1])
p_template['_p',1] = np.array([0.9, 1.1])
p_template['_p',2] = np.array([1.1, 0.9])

def p_fun(t_now):
 return p_template

MPC.set_p_fun(p_fun)

Note the nominal case is now:
alpha = 1
beta = 1
which is determined by the order in the arrays above (first element is nominal).

	Parameters

	n_combinations (int) – Define the number of combinations for the uncertain parameters for robust MPC.

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 get_tvp_template

get_tvp_template

Class method.

	
do_mpc.controller.MPC.get_tvp_template(self)

	Obtain output template for set_tvp_fun().

The method returns a structured object with n_horizon+1 elements,
and a set of time-varying parameters (as defined in do_mpc.model.Model)
for each of these instances. The structure is initialized with all zeros.
Use this object to define values of the time-varying parameters.

This structure (with numerical values) should be used as the output of the tvp_fun function which is set to the class with set_tvp_fun().
Use the combination of get_tvp_template() and set_tvp_fun().

Example:

in model definition:
alpha = model.set_variable(var_type='_tvp', var_name='alpha')
beta = model.set_variable(var_type='_tvp', var_name='beta')

...
in optimizer configuration:
tvp_temp_1 = optimizer.get_tvp_template()
tvp_temp_1['_tvp', :] = np.array([1,1])

tvp_temp_2 = optimizer.get_tvp_template()
tvp_temp_2['_tvp', :] = np.array([0,0])

def tvp_fun(t_now):
 if t_now<10:
 return tvp_temp_1
 else:
 tvp_temp_2

optimizer.set_tvp_fun(tvp_fun)

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 make_step

make_step

Class method.

	
do_mpc.controller.MPC.make_step(self, x0)

	Main method of the class during runtime. This method is called at each timestep
and returns the control input for the current initial state x0.

The method prepares the MHE by setting the current parameters, calls solve()
and updates the do_mpc.data.Data object.

	Parameters

	x0 (numpy.ndarray or casadi.DM) – Current state of the system.

	Returns

	u0

	Return type

	numpy.ndarray

This page is auto-generated. Page source is not available on Github.

 prepare_nlp

prepare_nlp

Class method.

	
do_mpc.controller.MPC.prepare_nlp(self)

	Prepare the optimization problem.
Typically, this method is called internally from setup().

Users should only call this method if they intend to modify the objective with nlp_obj,
the constraints with nlp_cons, nlp_cons_lb and nlp_cons_ub.

To finish the setup process, users MUST call create_nlp() afterwards.

Note

Do NOT call setup() if you intend to go the manual route with prepare_nlp() and create_nlp().

Note

Only AFTER calling prepare_nlp() the previously mentionned attributes
nlp_obj, nlp_cons, nlp_cons_lb, nlp_cons_ub
become available.

This page is auto-generated. Page source is not available on Github.

 reset_history

reset_history

Class method.

	
do_mpc.controller.MPC.reset_history(self)

	Reset the history of the optimizer.
All data from the do_mpc.data.Data instance is removed.

This page is auto-generated. Page source is not available on Github.

 set_initial_guess

set_initial_guess

Class method.

	
do_mpc.controller.MPC.set_initial_guess(self)

	Initial guess for optimization variables.
Uses the current class attributes x0, z0 and u0 to create the initial guess.
The initial guess is simply the initial values for all \(k=0,\dots,N\) instances of \(x_k\), \(u_k\) and \(z_k\).

Warning

If no initial values for x0, z0 and u0 were supplied during setup, these default to zero.

Note

The initial guess is fully customizable by directly setting values on the class attribute:
opt_x_num.

This page is auto-generated. Page source is not available on Github.

 set_nl_cons

set_nl_cons

Class method.

	
do_mpc.controller.MPC.set_nl_cons(self, expr_name, expr, ub=inf, soft_constraint=False, penalty_term_cons=1, maximum_violation=inf)

	Introduce new constraint to the class. Further constraints are optional.
Expressions must be formulated with respect to _x, _u, _z, _tvp, _p.
They are implemented as:

\[m(x,u,z,p_{\text{tv}}, p) \leq m_{\text{ub}}\]

Setting the flag soft_constraint=True will introduce slack variables \(\epsilon\), such that:

\[\begin{split}m(x,u,z,p_{\text{tv}}, p)-\epsilon &\leq m_{\text{ub}},\\
0 &\leq \epsilon \leq \epsilon_{\text{max}},\end{split}\]

Slack variables are added to the cost function and multiplied with the supplied penalty term.
This formulation makes constraints soft, meaning that a certain violation is tolerated and does not lead to infeasibility.
Typically, high values for the penalty are suggested to avoid significant violation of the constraints.

	Parameters

	
	expr_name (string) – Arbitrary name for the given expression. Names are used for key word indexing.

	expr (CasADi SX or MX) – CasADi SX or MX function depending on _x, _u, _z, _tvp, _p.

	Raises

	
	assertion – expr_name must be str

	assertion – expr must be a casadi SX or MX type

	Returns

	Returns the newly created expression. Expression can be used e.g. for the RHS.

	Return type

	casadi.SX or casadi.MX

This page is auto-generated. Page source is not available on Github.

 set_objective

set_objective

Class method.

	
do_mpc.controller.MPC.set_objective(self, mterm=None, lterm=None)

	Sets the objective of the optimal control problem (OCP). We introduce the following cost function:

\[J(x,u,z) = \sum_{k=0}^{N}\left(\underbrace{l(x_k,z_k,u_k,p_k,p_{\text{tv},k})}_{\text{lagrange term}}
+ \underbrace{\Delta u_k^T R \Delta u_k}_{\text{r-term}}\right)
+ \underbrace{m(x_{N+1})}_{\text{meyer term}}\]

which is applied to the discrete-time model AND the discretized continuous-time model.
For discretization we use orthogonal collocation on finite elements .
The cost function is evaluated only on the first collocation point of each interval.

set_objective() is used to set the \(l(x_k,z_k,u_k,p_k,p_{\text{tv},k})\) (lterm) and \(m(x_{N+1})\) (mterm), where N is the prediction horizon.
Please see set_rterm() for the penalization of the control inputs.

	Parameters

	
	lterm (CasADi SX or MX) – Stage cost - scalar symbolic expression with respect to _x, _u, _z, _tvp, _p

	mterm (CasADi SX or MX) – Terminal cost - scalar symbolic expression with respect to _x and _p

	Raises

	
	assertion – mterm must have shape=(1,1) (scalar expression)

	assertion – lterm must have shape=(1,1) (scalar expression)

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 set_p_fun

set_p_fun

Class method.

	
do_mpc.controller.MPC.set_p_fun(self, p_fun)

	Set function which returns parameters.
The p_fun is called at each optimization step to get the current values of the (uncertain) parameters.

This is the low-level API method to set user defined scenarios for robust multi-stage MPC by defining an arbitrary number
of combinations for the parameters defined in the model.
For more details on robust multi-stage MPC please read our background article.

The method takes as input a function, which MUST
return a structured object, based on the defined parameters and the number of combinations.
The defined function has time as a single input.

Obtain this structured object first, by calling get_p_template().

Use the combination of get_p_template() and set_p_fun() as a more adaptable alternative to set_uncertainty_values().

Note

We advice less experienced users to use set_uncertainty_values() as an alterntive way to configure the
scenario-tree for robust multi-stage MPC.

Example:

in model definition:
alpha = model.set_variable(var_type='_p', var_name='alpha')
beta = model.set_variable(var_type='_p', var_name='beta')

...
in MPC configuration:
n_combinations = 3
p_template = MPC.get_p_template(n_combinations)
p_template['_p',0] = np.array([1,1])
p_template['_p',1] = np.array([0.9, 1.1])
p_template['_p',2] = np.array([1.1, 0.9])

def p_fun(t_now):
 return p_template

MPC.set_p_fun(p_fun)

Note the nominal case is now:
alpha = 1,
beta = 1
which is determined by the order in the arrays above (first element is nominal).

	Parameters

	p_fun (function) – Function which returns a structure with numerical values. Must be the same structure as obtained from get_p_template(). Function must have a single input (time).

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 set_param

set_param

Class method.

	
do_mpc.controller.MPC.set_param(self, **kwargs)

	Set the parameters of the MPC class. Parameters must be passed as pairs of valid keywords and respective argument.
For example:

mpc.set_param(n_horizon = 20)

It is also possible and convenient to pass a dictionary with multiple parameters simultaneously as shown in the following example:

setup_mpc = {
 'n_horizon': 20,
 't_step': 0.5,
}
mpc.set_param(**setup_mpc)

This makes use of thy python “unpack” operator. See more details here [https://codeyarns.github.io/tech/2012-04-25-unpack-operator-in-python.html].

Note

The only required parameters are n_horizon and t_step. All other parameters are optional.

Note

set_param() can be called multiple times. Previously passed arguments are overwritten by successive calls.

The following parameters are available:

	Parameters

	
	n_horizon (int) – Prediction horizon of the optimal control problem. Parameter must be set by user.

	n_robust (int , optional) – Robust horizon for robust scenario-tree MPC, defaults to 0. Optimization problem grows exponentially with n_robust.

	open_loop (bool , optional) – Setting for scenario-tree MPC: If the parameter is False, for each timestep AND scenario an individual control input is computed. If set to True, the same control input is used for each scenario. Defaults to False.

	t_step (float) – Timestep of the mpc.

	use_terminal_bounds (bool) – Choose if terminal bounds for the states are used. Defaults to True. Set terminal bounds with terminal_bounds.

	state_discretization (str) – Choose the state discretization for continuous models. Currently only 'collocation' is available. Defaults to 'collocation'. Has no effect if model is created in discrete type.

	collocation_type (str) – Choose the collocation type for continuous models with collocation as state discretization. Currently only 'radau' is available. Defaults to 'radau'.

	collocation_deg (int) – Choose the collocation degree for continuous models with collocation as state discretization. Defaults to 2.

	collocation_ni (int) – For orthogonal collocation choose the number of finite elements for the states within a time-step (and during constant control input). Defaults to 1. Can be used to avoid high-order polynomials.

	nl_cons_check_colloc_points (bool) – For orthogonal collocation choose whether the nonlinear bounds set with set_nl_cons() are evaluated once per finite Element or for each collocation point. Defaults to False (once per collocation point).

	nl_cons_single_slack (bool) – If True, soft-constraints set with set_nl_cons() introduce only a single slack variable for the entire horizon. Defaults to False.

	cons_check_colloc_points (bool) – For orthogonal collocation choose whether the linear bounds set with bounds are evaluated once per finite Element or for each collocation point. Defaults to True (for all collocation points).

	store_full_solution (bool) – Choose whether to store the full solution of the optimization problem. This is required for animating the predictions in post processing. However, it drastically increases the required storage. Defaults to False.

	store_lagr_multiplier (bool) – Choose whether to store the lagrange multipliers of the optimization problem. Increases the required storage. Defaults to True.

	store_solver_stats (dict) – Choose which solver statistics to store. Must be a list of valid statistics. Defaults to ['success','t_wall_total'].

	nlpsol_opts – Dictionary with options for the CasADi solver call nlpsol with plugin ipopt. All options are listed here [http://casadi.sourceforge.net/api/internal/d4/d89/group__nlpsol.html].

Note

We highly suggest to change the linear solver for IPOPT from mumps to MA27. In many cases this will drastically boost the speed of do-mpc. Change the linear solver with:

MPC.set_param(nlpsol_opts = {'ipopt.linear_solver': 'MA27'})

Note

To suppress the output of IPOPT, please use:

suppress_ipopt = {'ipopt.print_level':0, 'ipopt.sb': 'yes', 'print_time':0}
MPC.set_param(nlpsol_opts = suppress_ipopt)

This page is auto-generated. Page source is not available on Github.

 set_rterm

set_rterm

Class method.

	
do_mpc.controller.MPC.set_rterm(self, **kwargs)

	Set the penality factor for the inputs. Call this function with keyword argument refering to the input names in
model and the penalty factor as the respective value.

We define for \(i \in \mathbb{I}\), where \(\mathbb{I}\) is the set of inputs
and all \(k=0,\dots, N\) where \(N\) denotes the horizon:

\[\Delta u_{k,i} = u_{k,i} - u_{k-1,i}\]

and add:

\[\sum_{k=0}^N \sum_{i \in \mathbb{I}} r_{i}\Delta u_{k,i}^2,\]

the weighted squared cost to the MPC objective function.

Example:

in model definition:
Q_heat = model.set_variable(var_type='_u', var_name='Q_heat')
F_flow = model.set_variable(var_type='_u', var_name='F_flow')

...
in MPC configuration:
MPC.set_rterm(Q_heat = 10)
MPC.set_rterm(F_flow = 10)
or alternatively:
MPC.set_rterm(Q_heat = 10, F_flow = 10)

In the above example we set \(r_{Q_{\text{heat}}}=10\)
and \(r_{F_{\text{flow}}}=10\).

Note

For \(k=0\) we obtain \(u_{-1}\) from the previous solution.

This page is auto-generated. Page source is not available on Github.

 set_tvp_fun

set_tvp_fun

Class method.

	
do_mpc.controller.MPC.set_tvp_fun(self, tvp_fun)

	Set function which returns time-varying parameters.

The tvp_fun is called at each optimization step to get the current prediction of the time-varying parameters.
The supplied function must be callable with the current time as the only input. Furthermore, the function must return
a CasADi structured object which is based on the horizon and on the model definition. The structure can be obtained with
get_tvp_template().

Example:

in model definition:
alpha = model.set_variable(var_type='_tvp', var_name='alpha')
beta = model.set_variable(var_type='_tvp', var_name='beta')

...
in optimizer configuration:
tvp_temp_1 = optimizer.get_tvp_template()
tvp_temp_1['_tvp', :] = np.array([1,1])

tvp_temp_2 = optimizer.get_tvp_template()
tvp_temp_2['_tvp', :] = np.array([0,0])

def tvp_fun(t_now):
 if t_now<10:
 return tvp_temp_1
 else:
 tvp_temp_2

optimizer.set_tvp_fun(tvp_fun)

Note

The method set_tvp_fun(). must be called prior to setup IF time-varying parameters are defined in the model.
It is not required to call the method if no time-varying parameters are defined.

	Parameters

	tvp_fun (function) – Function that returns the predicted tvp values at each timestep. Must have single input (float) and return a structure3.DMStruct (obtained with get_tvp_template()).

This page is auto-generated. Page source is not available on Github.

 set_uncertainty_values

set_uncertainty_values

Class method.

	
do_mpc.controller.MPC.set_uncertainty_values(self, **kwargs)

	Define scenarios for the uncertain parameters.
High-level API method to conveniently set all possible scenarios for multistage MPC.
For more details on robust multi-stage MPC please read our background article.

Pass a number of keyword arguments, where each keyword refers to a user defined parameter name from the model definition.
The value for each parameter must be an array (or list), with an arbitrary number of possible values for this parameter.
The first element is the nominal case.

Example:

in model definition:
alpha = model.set_variable(var_type='_p', var_name='alpha')
beta = model.set_variable(var_type='_p', var_name='beta')
gamma = model.set_variable(var_type='_p', var_name='gamma')
...
in MPC configuration:
alpha_var = np.array([1., 0.9, 1.1])
beta_var = np.array([1., 1.05])
MPC.set_uncertainty_values(
 alpha = alpha_var,
 beta = beta_var
)

Note

Parameters that are not imporant for the MPC controller (e.g. MHE tuning matrices)
can be ignored with the new interface (see gamma in the example above).

Note the nominal case is now:
alpha = 1,
beta = 1
which is determined by the order in the arrays above (first element is nominal).

	Parameters

	kwargs – Arbitrary number of keyword arguments.

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 setup

setup

Class method.

	
do_mpc.controller.MPC.setup(self)

	Setup the MPC class.
Internally, this method will create the MPC optimization problem under consideration
of the supplied dynamic model and the given MPC class instance configuration.

The setup() method can be called again after changing the configuration
(e.g. adapting bounds) and will simply overwrite the previous optimization problem.

Note

After this call, the solve() and make_step() method is applicable.

Warning

The setup() method may take a while depending on the size of your MPC problem.
Note that especially for robust multi-stage MPC with a long robust horizon and many
possible combinations of the uncertain parameters very large problems will arise.

For more details on robust multi-stage MPC please read our background article.

This page is auto-generated. Page source is not available on Github.

 solve

solve

Class method.

	
do_mpc.controller.MPC.solve(self)

	Solves the optmization problem.

The current problem is defined by the parameters in the
opt_p_num CasADi structured Data.

Typically, opt_p_num is prepared for the current iteration in the make_step() method.
It is, however, valid and possible to directly set paramters in opt_p_num before calling solve().

The method updates the opt_p_num and opt_x_num attributes of the class.
By resetting opt_x_num to the current solution, the method implicitly
enables warmstarting the optimizer for the next iteration, since this vector is always used as the initial guess.

Warning

The method is part of the public API but it is generally not advised to use it.
Instead we recommend to call make_step() at each iterations, which acts as a wrapper
for solve().

	Raises

	asssertion – Optimizer was not setup yet.

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 estimator

estimator

Classes

	EKF

	Extended Kalman Filter.

	Estimator

	The Estimator base class.

	MHE

	Moving horizon estimator.

	StateFeedback

	Simple state-feedback “estimator”.

This page is auto-generated. Page source is not available on Github.

 EKF

EKF

	
class do_mpc.estimator.EKF(model)

	Extended Kalman Filter. Setup this class and use EKF.make_step()
during runtime to obtain the currently estimated states given the measurements y0.

Warning

Not currently implemented.

Attributes

	EKF.t0

	Current time marker of the class.

	EKF.u0

	Initial input and current iterate.

	EKF.x0

	Initial state and current iterate.

	EKF.z0

	Initial algebraic state and current iterate.

Methods

	EKF.make_step

	Main method during runtime.

	EKF.reset_history

	Reset the history of the estimator

This page is auto-generated. Page source is not available on Github.

 t0

t0

Class attribute.

	
EKF.t0

	Current time marker of the class.
Use this property to set of query the time.

Set with int, float, numpy.ndarray or casadi.DM type.

This page is auto-generated. Page source is not available on Github.

 u0

u0

Class attribute.

	
EKF.u0

	Initial input and current iterate.
This is the numerical structure holding the information about the current input
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_u','heating', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.u0['heating', 0] # 0th element of variable
mpc.u0['heating'] # all elements of variable
mpc.u0['heating', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 x0

x0

Class attribute.

	
EKF.x0

	Initial state and current iterate.
This is the numerical structure holding the information about the current states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_x','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.x0['temperature', 0] # 0th element of variable
mpc.x0['temperature'] # all elements of variable
mpc.x0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 z0

z0

Class attribute.

	
EKF.z0

	Initial algebraic state and current iterate.
This is the numerical structure holding the information about the current algebraic states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_z','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.z0['temperature', 0] # 0th element of variable
mpc.z0['temperature'] # all elements of variable
mpc.z0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 make_step

make_step

Class method.

	
do_mpc.estimator.EKF.make_step(self, y0)

	Main method during runtime. Pass the most recent measurement and
retrieve the estimated state.

This page is auto-generated. Page source is not available on Github.

 reset_history

reset_history

Class method.

	
do_mpc.estimator.EKF.reset_history(self)

	Reset the history of the estimator

This page is auto-generated. Page source is not available on Github.

 Estimator

Estimator

	
class do_mpc.estimator.Estimator(model)

	The Estimator base class. Used for StateFeedback, EKF and MHE.
This class cannot be used independently.

Note

The methods Estimator.set_initial_state() and Estimator.reset_history()
are overwritten when using the MHE by the methods defined in do_mpc.optimizer.Optimizer.

Attributes

	Estimator.t0

	Current time marker of the class.

	Estimator.u0

	Initial input and current iterate.

	Estimator.x0

	Initial state and current iterate.

	Estimator.z0

	Initial algebraic state and current iterate.

Methods

	Estimator.reset_history

	Reset the history of the estimator

This page is auto-generated. Page source is not available on Github.

 t0

t0

Class attribute.

	
Estimator.t0

	Current time marker of the class.
Use this property to set of query the time.

Set with int, float, numpy.ndarray or casadi.DM type.

This page is auto-generated. Page source is not available on Github.

 u0

u0

Class attribute.

	
Estimator.u0

	Initial input and current iterate.
This is the numerical structure holding the information about the current input
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_u','heating', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.u0['heating', 0] # 0th element of variable
mpc.u0['heating'] # all elements of variable
mpc.u0['heating', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 x0

x0

Class attribute.

	
Estimator.x0

	Initial state and current iterate.
This is the numerical structure holding the information about the current states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_x','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.x0['temperature', 0] # 0th element of variable
mpc.x0['temperature'] # all elements of variable
mpc.x0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 z0

z0

Class attribute.

	
Estimator.z0

	Initial algebraic state and current iterate.
This is the numerical structure holding the information about the current algebraic states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_z','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.z0['temperature', 0] # 0th element of variable
mpc.z0['temperature'] # all elements of variable
mpc.z0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 reset_history

reset_history

Class method.

	
do_mpc.estimator.Estimator.reset_history(self)

	Reset the history of the estimator

This page is auto-generated. Page source is not available on Github.

 MHE

MHE

	
class do_mpc.estimator.MHE(model, p_est_list=[])

	Moving horizon estimator.

For general information on moving horizon estimation, please read our background article.

The MHE estimator extends the do_mpc.optimizer.Optimizer base class
(which is also used for do_mpc.controller.MPC), as well as the Estimator base class.
Use this class to configure and run the MHE based on a previously configured do_mpc.model.Model instance.

The class is initiated by passing a list of the parameters that should be estimated. This must be a subset (or all) of the parameters defined in
do_mpc.model.Model. This allows to define parameters in the model that influence the model externally (e.g. weather predictions),
and those that are internal e.g. system parameters and can be estimated.
Passing an empty list (default) value, means that no parameters are estimated.

Note

Parameters are influencing the model equation at all timesteps but are constant over the entire horizon.
Parameters could also be introduced as states without dynamic but this would increase the total number of optimization variables.

Configuration and setup:

Configuring and setting up the MHE involves the following steps:

	Use set_param() to configure the MHE. See docstring for details.

	Set the objective of the control problem with set_default_objective() or use the low-level interface set_objective().

	Set upper and lower bounds.

	Optionally, set further (non-linear) constraints with set_nl_cons().

	Use get_p_template() and set_p_fun() to set the function for the (not estimated) parameters.

	Use get_tvp_template() and set_tvp_fun() to create a method to obtain new time-varying parameters at each iteration.

	To finalize the class configuration there are two routes. The default approach is to call setup(). For deep customization use the combination of prepare_nlp() and create_nlp(). See graph below for an illustration of the process.

digraph G {
 graph [fontname = "helvetica"];
 rankdir=LR;

 subgraph cluster_main {
 node [fontname = "helvetica", shape=box, fontcolor="#404040", color="#707070"];
 edge [fontname = "helvetica", color="#707070"];

 start [label="Two ways to setup"];
 setup [label="setup", href="../api/do_mpc.estimator.MHE.setup.html", target="_top", fontname = "Consolas"];
 create_nlp [label="create_nlp", href="../api/do_mpc.estimator.MHE.create_nlp.html", target="_top", fontname = "Consolas"];
 process [label="Modify NLP"];
 prepare_nlp [label="prepare_nlp", href="../api/do_mpc.estimator.MHE.prepare_nlp.html", target="_top", fontname = "Consolas"];
 finish [label="Configured MHE class"]
 start -> setup, prepare_nlp;
 prepare_nlp -> process;
 process -> create_nlp;
 setup, create_nlp -> finish;
 color=none;
 }

 subgraph cluster_modification {
 rankdir=TB;
 node [fontname = "helvetica", shape=box, fontcolor="#404040", color="#707070"];
 edge [fontname = "helvetica", color="#707070"];
 opt_x [label="opt_x", href="../api/do_mpc.estimator.MHE.opt_x.html", target="_top", fontname = "Consolas"];
 opt_p [label="opt_p", href="../api/do_mpc.estimator.MHE.opt_p.html", target="_top", fontname = "Consolas"];
 nlp_cons [label="nlp_cons", href="../api/do_mpc.estimator.MHE.nlp_cons.html", target="_top", fontname = "Consolas"];
 nlp_obj [label="nlp_obj", href="../api/do_mpc.estimator.MHE.nlp_obj.html", target="_top", fontname = "Consolas"];

 opt_x -> nlp_cons, nlp_obj;
 opt_p -> nlp_cons, nlp_obj;

 label = "Attributes to modify the NLP.";
 color=black;
 }

 nlp_cons -> process;
 nlp_obj -> process;
}

Route to setting up the MHE class.

Warning

Before running the estimator, make sure to supply a valid initial guess for all estimated variables (states, algebraic states, inputs and parameters).
Simply set the intial values of x0, z0, u0 and p_est0 and then call set_initial_guess().

To take full control over the initial guess, modify the values of opt_x_num.

During runtime use make_step() with the most recent measurement to obtain the estimated states.

	Parameters

	
	model (do_mpc.model.Model) – A configured and setup do_mpc.model.Model

	p_est_list (list) – List with names of parameters (_p) defined in model

Attributes

	MHE.bounds

	Query and set bounds of the optimization variables.

	MHE.nlp_cons

	Query and modify (symbolically) the NLP constraints.

	MHE.nlp_cons_lb

	Query and modify the lower bounds of the nlp_cons.

	MHE.nlp_cons_ub

	Query and modify the upper bounds of the nlp_cons.

	MHE.nlp_obj

	Query and modify (symbolically) the NLP objective function.

	MHE.opt_p

	Full structure of (symbolic) MHE parameters.

	MHE.opt_p_num

	Full MHE parameter vector.

	MHE.opt_x

	Full structure of the (symbolic) MHE optimization variables.

	MHE.opt_x_num

	Full MHE solution and initial guess.

	MHE.p_est0

	Initial value of estimated parameters and current iterate.

	MHE.scaling

	Query and set scaling of the optimization variables.

	MHE.t0

	Current time marker of the class.

	MHE.u0

	Initial input and current iterate.

	MHE.x0

	Initial state and current iterate.

	MHE.z0

	Initial algebraic state and current iterate.

Methods

	MHE.create_nlp

	Create the optimization problem.

	MHE.get_p_template

	Obtain output template for set_p_fun().

	MHE.get_tvp_template

	Obtain output template for set_tvp_fun().

	MHE.get_y_template

	Obtain output template for set_y_fun().

	MHE.make_step

	Main method of the class during runtime.

	MHE.prepare_nlp

	Prepare the optimization problem.

	MHE.reset_history

	Reset the history of the optimizer.

	MHE.set_default_objective

	Configure the suggested default MHE formulation.

	MHE.set_initial_guess

	Initial guess for optimization variables.

	MHE.set_nl_cons

	Introduce new constraint to the class.

	MHE.set_objective

	Set the stage cost \(l(\cdot)\) and arrival cost \(m(\cdot)\) function for the MHE problem:

	MHE.set_p_fun

	Set function which returns parameters..

	MHE.set_param

	Method to set the parameters of the MHE class.

	MHE.set_tvp_fun

	Set function which returns time-varying parameters.

	MHE.set_y_fun

	Set the measurement function.

	MHE.setup

	The setup method finalizes the MHE creation.

	MHE.solve

	Solves the optmization problem.

This page is auto-generated. Page source is not available on Github.

 bounds

bounds

Class attribute.

	
MHE.bounds

	Query and set bounds of the optimization variables.
The bounds() method is an indexed property, meaning
getting and setting this property requires an index and calls this function.
The power index (elements are separated by commas) must contain atleast the following elements:

	order

	index name

	valid options

	1

	bound type

	lower and upper

	2

	variable type

	_x, _u and _z (and _p_est for MHE)

	3

	variable name

	Names defined in do_mpc.model.Model.

Further indices are possible (but not neccessary) when the referenced variable is a vector or matrix.

Example:

Set with:
optimizer.bounds['lower','_x', 'phi_1'] = -2*np.pi
optimizer.bounds['upper','_x', 'phi_1'] = 2*np.pi

Query with:
optimizer.bounds['lower','_x', 'phi_1']

This page is auto-generated. Page source is not available on Github.

 nlp_cons

nlp_cons

Class attribute.

	
MHE.nlp_cons

	Query and modify (symbolically) the NLP constraints.
Use the variables in opt_x and opt_p.

Prior to calling create_nlp() this attribute returns a list of symbolic constraints.
After calling create_nlp() this attribute returns the concatenation of this list
and the attribute cannot be altered anymore.

It is advised to append to the current list of nlp_cons:

mpc.prepare_nlp()

Create new constraint: Input at timestep 0 and 1 must be identical.
extra_cons = mpc.opt_x['_u', 0, 0]-mpc.opt_x['_u',1, 0]
mpc.nlp_cons.append(
 extra_cons
)

Create appropriate upper and lower bound (here they are both 0 to create an equality constraint)
mpc.nlp_cons_lb.append(np.zeros(extra_cons.shape))
mpc.nlp_cons_ub.append(np.zeros(extra_cons.shape))

mpc.create_nlp()

See the documentation of opt_x and opt_p on how to query these attributes.

Warning

This is a VERY low level feature and should be used with extreme caution.
It is easy to break the code.

Be especially careful NOT to accidentially overwrite the default objective.

Note

Modifications must be done after calling prepare_nlp()
and before calling create_nlp()

This page is auto-generated. Page source is not available on Github.

 nlp_cons_lb

nlp_cons_lb

Class attribute.

	
MHE.nlp_cons_lb

	Query and modify the lower bounds of the nlp_cons.

Prior to calling create_nlp() this attribute returns a list of lower bounds
matching the list of constraints obtained with nlp_cons.
After calling create_nlp() this attribute returns the concatenation of this list.

Values for lower (and upper) bounds MUST be added when adding new constraints to nlp_cons.

Warning

This is a VERY low level feature and should be used with extreme caution.
It is easy to break the code.

Note

Modifications must be done after calling prepare_nlp()

This page is auto-generated. Page source is not available on Github.

 nlp_cons_ub

nlp_cons_ub

Class attribute.

	
MHE.nlp_cons_ub

	Query and modify the upper bounds of the nlp_cons.

Prior to calling create_nlp() this attribute returns a list of upper bounds
matching the list of constraints obtained with nlp_cons.
After calling create_nlp() this attribute returns the concatenation of this list.

Values for upper (and lower) bounds MUST be added when adding new constraints to nlp_cons.

Warning

This is a VERY low level feature and should be used with extreme caution.
It is easy to break the code.

Note

Modifications must be done after calling prepare_nlp()

This page is auto-generated. Page source is not available on Github.

 nlp_obj

nlp_obj

Class attribute.

	
MHE.nlp_obj

	Query and modify (symbolically) the NLP objective function.
Use the variables in opt_x and opt_p.

It is advised to add to the current objective, e.g.:

mpc.prepare_nlp()
Modify the objective
mpc.nlp_obj += sum1(vertcat(*mpc.opt_x['_x', -1, 0])**2)
Finish creating the NLP
mpc.create_nlp()

See the documentation of opt_x and opt_p on how to query these attributes.

Warning

This is a VERY low level feature and should be used with extreme caution.
It is easy to break the code.

Be especially careful NOT to accidentially overwrite the default objective.

Note

Modifications must be done after calling prepare_nlp()
and before calling create_nlp()

This page is auto-generated. Page source is not available on Github.

 opt_p

opt_p

Class attribute.

	
MHE.opt_p

	Full structure of (symbolic) MHE parameters.

The attribute can be used to alter the objective function or constraints of the NLP.

The attribute is a CasADi numeric structure with nested power indices.
It can be indexed as follows:

previously estimated state:
opt_p['_x_prev', _x_name]
previously estimated parameters:
opt_p['_p_est_prev', _x_name]
known parameters
opt_p['_p_set', _p_name]
time-varying parameters:
opt_p['_tvp', time_step, _tvp_name]
sequence of measurements:
opt_p['_y_meas', time_step, _y_name]

The names refer to those given in the do_mpc.model.Model configuration.
Further indices are possible, if the variables are itself vectors or matrices.

Warning

Do not tweak or overwrite this attribute unless you known what you are doing.

Note

The attribute is populated when calling setup() or create_nlp().

This page is auto-generated. Page source is not available on Github.

 opt_p_num

opt_p_num

Class attribute.

	
MHE.opt_p_num

	Full MHE parameter vector.

This attribute is used when calling the solver to pass all required parameters,
including

	previously estimated state(s)

	previously estimated parameter(s)

	known parameters

	sequence of time-varying parameters

	sequence of measurements parameters

do-mpc handles setting these parameters automatically in the make_step()
method. However, you can set these values manually and directly call solve().

The attribute is a CasADi numeric structure with nested power indices.
It can be indexed as follows:

previously estimated state:
opt_p_num['_x_prev', _x_name]
previously estimated parameters:
opt_p_num['_p_est_prev', _x_name]
known parameters
opt_p_num['_p_set', _p_name]
time-varying parameters:
opt_p_num['_tvp', time_step, _tvp_name]
sequence of measurements:
opt_p_num['_y_meas', time_step, _y_name]

The names refer to those given in the do_mpc.model.Model configuration.
Further indices are possible, if the variables are itself vectors or matrices.

Warning

Do not tweak or overwrite this attribute unless you known what you are doing.

Note

The attribute is populated when calling setup()

This page is auto-generated. Page source is not available on Github.

 opt_x

opt_x

Class attribute.

	
MHE.opt_x

	Full structure of the (symbolic) MHE optimization variables.

The attribute is a CasADi numeric structure with nested power indices.
It can be indexed as follows:

dynamic states:
opt_x['_x', time_step, collocation_point, _x_name]
algebraic states:
opt_x['_z', time_step, collocation_point, _z_name]
inputs:
opt_x['_u', time_step, _u_name]
estimated parameters:
opt_x_Num['_p_est', _p_names]
slack variables for soft constraints:
opt_x['_eps', time_step, _nl_cons_name]

The names refer to those given in the do_mpc.model.Model configuration.
Further indices are possible, if the variables are itself vectors or matrices.

The attribute can be used to alter the objective function or constraints of the NLP.

Note

The attribute opt_x carries the scaled values of all variables.

Warning

Do not tweak or overwrite this attribute unless you known what you are doing.

Note

The attribute is populated when calling setup() or prepare_nlp()

This page is auto-generated. Page source is not available on Github.

 opt_x_num

opt_x_num

Class attribute.

	
MHE.opt_x_num

	Full MHE solution and initial guess.

This is the core attribute of the MHE class.
It is used as the initial guess when solving the optimization problem
and then overwritten with the current solution.

The attribute is a CasADi numeric structure with nested power indices.
It can be indexed as follows:

dynamic states:
opt_x_num['_x', time_step, collocation_point, _x_name]
algebraic states:
opt_x_num['_z', time_step, collocation_point, _z_name]
inputs:
opt_x_num['_u', time_step, _u_name]
estimated parameters:
opt_x_Num['_p_est', _p_names]
slack variables for soft constraints:
opt_x_num['_eps', time_step, _nl_cons_name]

The names refer to those given in the do_mpc.model.Model configuration.
Further indices are possible, if the variables are itself vectors or matrices.

The attribute can be used to manually set a custom initial guess or for debugging purposes.

Note

The attribute opt_x_num carries the scaled values of all variables. See opt_x_num_unscaled
for the unscaled values (these are not used as the initial guess).

Warning

Do not tweak or overwrite this attribute unless you known what you are doing.

Note

The attribute is populated when calling setup()

This page is auto-generated. Page source is not available on Github.

 p_est0

p_est0

Class attribute.

	
MHE.p_est0

	Initial value of estimated parameters and current iterate.
This is the numerical structure holding the information about the current
estimated parameters in the class.
The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_p','temperature', shape=(4,1))

Initiate MHE with list of estimated parameters:
mhe = do_mpc.estimator.MHE(model, ['temperature'])

Get or set current value of variable:
mhe.p_est0['temperature', 0] # 0th element of variable
mhe.p_est0['temperature'] # all elements of variable
mhe.p_est0['temperature', 0:2] # 0th and 1st element

Usefull CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 scaling

scaling

Class attribute.

	
MHE.scaling

	Query and set scaling of the optimization variables.
The Optimizer.scaling() method is an indexed property, meaning
getting and setting this property requires an index and calls this function.
The power index (elements are seperated by comas) must contain atleast the following elements:

	order

	index name

	valid options

	1

	variable type

	_x, _u and _z (and _p_est for MHE)

	2

	variable name

	Names defined in do_mpc.model.Model.

Further indices are possible (but not neccessary) when the referenced variable is a vector or matrix.

Example:

Set with:
optimizer.scaling['_x', 'phi_1'] = 2
optimizer.scaling['_x', 'phi_2'] = 2

Query with:
optimizer.scaling['_x', 'phi_1']

Scaling factors \(a\) affect the MHE / MPC optimization problem. The optimization variables are scaled variables:

\[\bar\phi = \frac{\phi}{a_{\phi}} \quad \forall \phi \in [x, u, z, p_{\text{est}}]\]

Scaled variables are used to formulate the bounds \(\bar\phi_{lb} \leq \bar\phi_{ub}\)
and for the evaluation of the ODE. For the objective function and the nonlinear constraints
the unscaled variables are used. The algebraic equations are also not scaled.

Note

Scaling the optimization problem is suggested when states and / or inputs take on values
which differ by orders of magnitude.

This page is auto-generated. Page source is not available on Github.

 t0

t0

Class attribute.

	
MHE.t0

	Current time marker of the class.
Use this property to set of query the time.

Set with int, float, numpy.ndarray or casadi.DM type.

This page is auto-generated. Page source is not available on Github.

 u0

u0

Class attribute.

	
MHE.u0

	Initial input and current iterate.
This is the numerical structure holding the information about the current input
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_u','heating', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.u0['heating', 0] # 0th element of variable
mpc.u0['heating'] # all elements of variable
mpc.u0['heating', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 x0

x0

Class attribute.

	
MHE.x0

	Initial state and current iterate.
This is the numerical structure holding the information about the current states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_x','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.x0['temperature', 0] # 0th element of variable
mpc.x0['temperature'] # all elements of variable
mpc.x0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 z0

z0

Class attribute.

	
MHE.z0

	Initial algebraic state and current iterate.
This is the numerical structure holding the information about the current algebraic states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_z','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.z0['temperature', 0] # 0th element of variable
mpc.z0['temperature'] # all elements of variable
mpc.z0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 create_nlp

create_nlp

Class method.

	
do_mpc.estimator.MHE.create_nlp(self)

	Create the optimization problem.
Typically, this method is called internally from setup().

Users should only call this method if they intend to modify the objective with nlp_obj,
the constraints with nlp_cons, nlp_cons_lb and nlp_cons_ub.

To finish the setup process, users MUST call create_nlp() afterwards.

Note

Do NOT call setup() if you intend to go the manual route with prepare_nlp() and create_nlp().

Note

Only AFTER calling prepare_nlp() the previously mentionned attributes
nlp_obj, nlp_cons, nlp_cons_lb, nlp_cons_ub
become available.

This page is auto-generated. Page source is not available on Github.

 get_p_template

get_p_template

Class method.

	
do_mpc.estimator.MHE.get_p_template(self)

	Obtain output template for set_p_fun().
This is used to set the (not estimated) parameters.
Use this structure as the return of a user defined parameter function (p_fun)
that is called at each MHE step. Pass this function to the MHE by calling set_p_fun().

Note

The combination of get_p_template() and set_p_fun() is
identical to the do_mpc.simulator.Simulator methods, if the MHE
is not estimating any parameters.

	Returns

	p_template

	Return type

	struct_symSX

This page is auto-generated. Page source is not available on Github.

 get_tvp_template

get_tvp_template

Class method.

	
do_mpc.estimator.MHE.get_tvp_template(self)

	Obtain output template for set_tvp_fun().

The method returns a structured object with n_horizon+1 elements,
and a set of time-varying parameters (as defined in do_mpc.model.Model)
for each of these instances. The structure is initialized with all zeros.
Use this object to define values of the time-varying parameters.

This structure (with numerical values) should be used as the output of the tvp_fun function which is set to the class with set_tvp_fun().
Use the combination of get_tvp_template() and set_tvp_fun().

Example:

in model definition:
alpha = model.set_variable(var_type='_tvp', var_name='alpha')
beta = model.set_variable(var_type='_tvp', var_name='beta')

...
in optimizer configuration:
tvp_temp_1 = optimizer.get_tvp_template()
tvp_temp_1['_tvp', :] = np.array([1,1])

tvp_temp_2 = optimizer.get_tvp_template()
tvp_temp_2['_tvp', :] = np.array([0,0])

def tvp_fun(t_now):
 if t_now<10:
 return tvp_temp_1
 else:
 tvp_temp_2

optimizer.set_tvp_fun(tvp_fun)

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 get_y_template

get_y_template

Class method.

	
do_mpc.estimator.MHE.get_y_template(self)

	Obtain output template for set_y_fun().

Use this structure as the return of a user defined parameter function (y_fun)
that is called at each MHE step. Pass this function to the MHE by calling set_y_fun().

The structure carries a set of measurements for each time step of the horizon and can be accessed as follows:

y_template['y_meas', k, 'meas_name']
Slicing is possible, e.g.:
y_template['y_meas', :, 'meas_name']

where k runs from 0 to N_horizon and meas_name refers to the user-defined names in do_mpc.model.Model.

Note

The structure is ordered, sucht that k=0 is the “oldest measurement” and k=N_horizon is the newest measurement.

By default, the following measurement function is choosen:

y_template = self.get_y_template()

def y_fun(t_now):
 n_steps = min(self.data._y.shape[0], self.n_horizon)
 for k in range(-n_steps,0):
 y_template['y_meas',k] = self.data._y[k]
 try:
 for k in range(self.n_horizon-n_steps):
 y_template['y_meas',k] = self.data._y[-n_steps]
 except:
 None
 return y_template

Which simply reads the last results from the MHE.data object.

	Returns

	y_template

	Return type

	struct_symSX

This page is auto-generated. Page source is not available on Github.

 make_step

make_step

Class method.

	
do_mpc.estimator.MHE.make_step(self, y0)

	Main method of the class during runtime. This method is called at each timestep
and returns the current state estimate for the current measurement y0.

The method prepares the MHE by setting the current parameters, calls solve()
and updates the do_mpc.data.Data object.

Warning

Moving horizon estimation will only work reliably once a full sequence of measurements
corresponding to the set horizon ist available.

	Parameters

	y0 (numpy.ndarray) – Current measurement.

	Returns

	x0, estimated state of the system.

	Return type

	numpy.ndarray

This page is auto-generated. Page source is not available on Github.

 prepare_nlp

prepare_nlp

Class method.

	
do_mpc.estimator.MHE.prepare_nlp(self)

	Prepare the optimization problem.
Typically, this method is called internally from setup().

Users should only call this method if they intend to modify the objective with nlp_obj,
the constraints with nlp_cons, nlp_cons_lb and nlp_cons_ub.

To finish the setup process, users MUST call create_nlp() afterwards.

Note

Do NOT call setup() if you intend to go the manual route with prepare_nlp() and create_nlp().

Note

Only AFTER calling prepare_nlp() the previously mentionned attributes
nlp_obj, nlp_cons, nlp_cons_lb, nlp_cons_ub
become available.

This page is auto-generated. Page source is not available on Github.

 reset_history

reset_history

Class method.

	
do_mpc.estimator.MHE.reset_history(self)

	Reset the history of the optimizer.
All data from the do_mpc.data.Data instance is removed.

This page is auto-generated. Page source is not available on Github.

 set_default_objective

set_default_objective

Class method.

	
do_mpc.estimator.MHE.set_default_objective(self, P_x, P_v=None, P_p=None, P_w=None)

	Configure the suggested default MHE formulation.

Use this method to pass tuning matrices for the MHE optimization problem:

\[\begin{split}\underset{
\begin{array}{c}
\mathbf{x}_{0:N+1}, \mathbf{u}_{0:N}, p,\\
\mathbf{w}_{0:N}, \mathbf{v}_{0:N}
\end{array}
}{\mathrm{min}}
&m(x_0,\tilde{x}_0, p,\tilde{p})
+\sum_{k=0}^{N-1} l(v_k, w_k, p, p_{\text{tv},k}),\\
&\left.\begin{aligned}
\mathrm{s.t.}\quad
x_{k+1} &= f(x_k,u_k,z_k,p,p_{\text{tv},k})+ w_k,\\
y_k &= h(x_k,u_k,z_k,p,p_{\text{tv},k}) + v_k, \\
&g(x_k,u_k,z_k,p_k,p_{\text{tv},k}) \leq 0
\end{aligned}\right\} k=0,\dots, N\end{split}\]

where we introduce the bold letter notation,
e.g. \(\mathbf{x}_{0:N+1}=[x_0, x_1, \dots, x_{N+1}]^T\) to represent sequences and where
\(\|x\|_P^2=x^T P x\) denotes the \(P\) weighted squared norm.

Pass the weighting matrices \(P_x\), \(P_p\) and \(P_v\) and \(P_w\).
The matrices must be of appropriate dimension and array-like.

Note

It is possible to pass parameters or time-varying parameters defined in the
do_mpc.model.Model as weighting.
You’ll probably choose time-varying parameters (_tvp) for P_v and P_w
and parameters (_p) for P_x and P_p.
Use set_p_fun() and set_tvp_fun() to configure how these values
are determined at each time step.

General remarks:

	In the case that no parameters are estimated, the weighting matrix \(P_p\) is not required.

	In the case that the do_mpc.model.Model is configured without process-noise (see do_mpc.model.Model.set_rhs()) the parameter P_w is not required.

	In the case that the do_mpc.model.Model is configured without measurement-noise (see do_mpc.model.Model.set_meas()) the parameter P_v is not required.

The respective terms are not present in the MHE formulation in that case.

Note

Use set_objective() as a low-level alternative for this method,
if you want to use a custom objective function.

	Parameters

	
	P_x (numpy.ndarray, casadi.SX, casadi.DM) – Tuning matrix \(P_x\) of dimension \(n \times n\) \((x \in \mathbb{R}^{n})\)

	P_v (numpy.ndarray, casadi.SX, casadi.DM) – Tuning matrix \(P_v\) of dimension \(m \times m\) \((v \in \mathbb{R}^{m})\)

	P_p (numpy.ndarray, casadi.SX, casadi.DM) – Tuning matrix \(P_p\) of dimension \(l \times l\) \((p_{\text{est}} \in \mathbb{R}^{l})\))

	P_w (numpy.ndarray, casadi.SX, casadi.DM) – Tuning matrix \(P_w\) of dimension \(k \times k\) \((w \in \mathbb{R}^{k})\)

This page is auto-generated. Page source is not available on Github.

 set_initial_guess

set_initial_guess

Class method.

	
do_mpc.estimator.MHE.set_initial_guess(self)

	Initial guess for optimization variables.
Uses the current class attributes x0, z0 and u0, p_est0 to create an initial guess for the MHE.
The initial guess is simply the initial values for all \(k=0,\dots,N\) instances of \(x_k\), \(u_k\) and \(z_k\), \(p_{\text{est,k}}\).

Warning

If no initial values for x0, z0 and u0 were supplied during setup, these default to zero.

Note

The initial guess is fully customizable by directly setting values on the class attribute:
opt_x_num.

This page is auto-generated. Page source is not available on Github.

 set_nl_cons

set_nl_cons

Class method.

	
do_mpc.estimator.MHE.set_nl_cons(self, expr_name, expr, ub=inf, soft_constraint=False, penalty_term_cons=1, maximum_violation=inf)

	Introduce new constraint to the class. Further constraints are optional.
Expressions must be formulated with respect to _x, _u, _z, _tvp, _p.
They are implemented as:

\[m(x,u,z,p_{\text{tv}}, p) \leq m_{\text{ub}}\]

Setting the flag soft_constraint=True will introduce slack variables \(\epsilon\), such that:

\[\begin{split}m(x,u,z,p_{\text{tv}}, p)-\epsilon &\leq m_{\text{ub}},\\
0 &\leq \epsilon \leq \epsilon_{\text{max}},\end{split}\]

Slack variables are added to the cost function and multiplied with the supplied penalty term.
This formulation makes constraints soft, meaning that a certain violation is tolerated and does not lead to infeasibility.
Typically, high values for the penalty are suggested to avoid significant violation of the constraints.

	Parameters

	
	expr_name (string) – Arbitrary name for the given expression. Names are used for key word indexing.

	expr (CasADi SX or MX) – CasADi SX or MX function depending on _x, _u, _z, _tvp, _p.

	Raises

	
	assertion – expr_name must be str

	assertion – expr must be a casadi SX or MX type

	Returns

	Returns the newly created expression. Expression can be used e.g. for the RHS.

	Return type

	casadi.SX or casadi.MX

This page is auto-generated. Page source is not available on Github.

 set_objective

set_objective

Class method.

	
do_mpc.estimator.MHE.set_objective(self, stage_cost, arrival_cost)

	Set the stage cost \(l(\cdot)\) and arrival cost \(m(\cdot)\) function for the MHE problem:

\[\begin{split}\underset{
\begin{array}{c}
\mathbf{x}_{0:N+1}, \mathbf{u}_{0:N}, p,\\
\mathbf{w}_{0:N}, \mathbf{v}_{0:N}
\end{array}
}{\mathrm{min}}
&m(x_0,\tilde{x}_0, p,\tilde{p})
+\sum_{k=0}^{N-1} l(v_k, w_k, p, p_{\text{tv},k}),\\
&\left.\begin{aligned}
\mathrm{s.t.}\quad
x_{k+1} &= f(x_k,u_k,z_k,p,p_{\text{tv},k})+ w_k,\\
y_k &= h(x_k,u_k,z_k,p,p_{\text{tv},k}) + v_k, \\
&g(x_k,u_k,z_k,p_k,p_{\text{tv},k}) \leq 0
\end{aligned}\right\} k=0,\dots, N\end{split}\]

Use the class attributes:

	mhe._w as \(w_k\)

	mhe._v as \(v_k\)

	mhe._x_prev as \(\tilde{x}_0\)

	mhe._x as \(x_0\)

	mhe._p_est_prev as \(\tilde{p}_0\)

	mhe._p_est as \(p_0\)

To formulate the objective function and pass the stage cost and arrival cost independently.

Note

The retrieved attributes are symbolic structures, which can be queried with the given variable names,
e.g.:

x1 = mhe._x['state_1']

For a vector of all states, use the .cat method as shown in the example below.

Example:

Get variables:
v = mhe._v.cat

stage_cost = v.T@np.diag(np.array([1,1,1,20,20]))@v

x_0 = mhe._x
x_prev = mhe._x_prev
p_0 = mhe._p_est
p_prev = mhe._p_est_prev

dx = x_0.cat - x_prev.cat
dp = p_0.cat - p_prev.cat

arrival_cost = 1e-4*dx.T@dx + 1e-4*dp.T@dp

mhe.set_objective(stage_cost, arrival_cost)

Note

Use set_default_objective() as a high-level wrapper for this method,
if you want to use the default MHE objective function.

	Parameters

	
	stage_cost (CasADi expression) – Stage cost that is added to the MHE objective at each age.

	arrival_cost (CasADi expression) – Arrival cost that is added to the MHE objective at the initial state.

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 set_p_fun

set_p_fun

Class method.

	
do_mpc.estimator.MHE.set_p_fun(self, p_fun)

	Set function which returns parameters..
The p_fun is called at each MHE time step and returns the (fixed) parameters.
The function must return a numerical CasADi structure, which can be retrieved with get_p_template().

	Parameters

	p_fun (function) – Parameter function.

This page is auto-generated. Page source is not available on Github.

 set_param

set_param

Class method.

	
do_mpc.estimator.MHE.set_param(self, **kwargs)

	Method to set the parameters of the MHE class. Parameters must be passed as pairs of valid keywords and respective argument.
For example:

mhe.set_param(n_horizon = 20)

It is also possible and convenient to pass a dictionary with multiple parameters simultaneously as shown in the following example:

setup_mhe = {
 'n_horizon': 20,
 't_step': 0.5,
}
mhe.set_param(**setup_mhe)

This makes use of thy python “unpack” operator. See more details here [https://codeyarns.github.io/tech/2012-04-25-unpack-operator-in-python.html].

Note

The only required parameters are n_horizon and t_step. All other parameters are optional.

Note

set_param() can be called multiple times. Previously passed arguments are overwritten by successive calls.

The following parameters are available:

	Parameters

	
	n_horizon (int) – Prediction horizon of the optimal control problem. Parameter must be set by user.

	t_step (float) – Timestep of the mhe.

	meas_from_data (bool) – Default option to retrieve past measurements for the MHE optimization problem. The set_y_fun() is called during setup.

	state_discretization (str) – Choose the state discretization for continuous models. Currently only 'collocation' is available. Defaults to 'collocation'. Has no effect if model is created in discrete type.

	collocation_type (str) – Choose the collocation type for continuous models with collocation as state discretization. Currently only 'radau' is available. Defaults to 'radau'.

	collocation_deg (int) – Choose the collocation degree for continuous models with collocation as state discretization. Defaults to 2.

	collocation_ni (int) – For orthogonal collocation, choose the number of finite elements for the states within a time-step (and during constant control input). Defaults to 1. Can be used to avoid high-order polynomials.

	nl_cons_check_colloc_points (bool) – For orthogonal collocation choose wether the bounds set with set_nl_cons() are evaluated once per finite Element or for each collocation point. Defaults to False (once per collocation point).

	cons_check_colloc_points (bool) – For orthogonal collocation choose whether the linear bounds set with bounds are evaluated once per finite Element or for each collocation point. Defaults to True (for all collocation points).

	nl_cons_single_slack (bool) – If True, soft-constraints set with set_nl_cons() introduce only a single slack variable for the entire horizon. Defaults to False.

	store_full_solution (bool) – Choose whether to store the full solution of the optimization problem. This is required for animating the predictions in post processing. However, it drastically increases the required storage. Defaults to False.

	store_lagr_multiplier (bool) – Choose whether to store the lagrange multipliers of the optimization problem. Increases the required storage. Defaults to True.

	store_solver_stats (dict) – Choose which solver statistics to store. Must be a list of valid statistics. Defaults to ['success','t_wall_S'].

	nlpsol_opts – Dictionary with options for the CasADi solver call nlpsol with plugin ipopt. All options are listed here [http://casadi.sourceforge.net/api/internal/d4/d89/group__nlpsol.html].

Note

We highly suggest to change the linear solver for IPOPT from mumps to MA27. In many cases this will drastically boost the speed of do-mpc. Change the linear solver with:

optimizer.set_param(nlpsol_opts = {'ipopt.linear_solver': 'MA27'})

Note

To suppress the output of IPOPT, please use:

suppress_ipopt = {'ipopt.print_level':0, 'ipopt.sb': 'yes', 'print_time':0}
optimizer.set_param(nlpsol_opts = suppress_ipopt)

This page is auto-generated. Page source is not available on Github.

 set_tvp_fun

set_tvp_fun

Class method.

	
do_mpc.estimator.MHE.set_tvp_fun(self, tvp_fun)

	Set function which returns time-varying parameters.

The tvp_fun is called at each optimization step to get the current prediction of the time-varying parameters.
The supplied function must be callable with the current time as the only input. Furthermore, the function must return
a CasADi structured object which is based on the horizon and on the model definition. The structure can be obtained with
get_tvp_template().

Example:

in model definition:
alpha = model.set_variable(var_type='_tvp', var_name='alpha')
beta = model.set_variable(var_type='_tvp', var_name='beta')

...
in optimizer configuration:
tvp_temp_1 = optimizer.get_tvp_template()
tvp_temp_1['_tvp', :] = np.array([1,1])

tvp_temp_2 = optimizer.get_tvp_template()
tvp_temp_2['_tvp', :] = np.array([0,0])

def tvp_fun(t_now):
 if t_now<10:
 return tvp_temp_1
 else:
 tvp_temp_2

optimizer.set_tvp_fun(tvp_fun)

Note

The method set_tvp_fun(). must be called prior to setup IF time-varying parameters are defined in the model.
It is not required to call the method if no time-varying parameters are defined.

	Parameters

	tvp_fun (function) – Function that returns the predicted tvp values at each timestep. Must have single input (float) and return a structure3.DMStruct (obtained with get_tvp_template()).

This page is auto-generated. Page source is not available on Github.

 set_y_fun

set_y_fun

Class method.

	
do_mpc.estimator.MHE.set_y_fun(self, y_fun)

	Set the measurement function. The function must return a CasADi structure which can be obtained
from get_y_template(). See the respective doc string for details.

	Parameters

	y_fun (function) – measurement function.

This page is auto-generated. Page source is not available on Github.

 setup

setup

Class method.

	
do_mpc.estimator.MHE.setup(self)

	The setup method finalizes the MHE creation.
The optimization problem is created based on the configuration of the module.

Note

After this call, the solve() and make_step() method is applicable.

This page is auto-generated. Page source is not available on Github.

 solve

solve

Class method.

	
do_mpc.estimator.MHE.solve(self)

	Solves the optmization problem.

The current problem is defined by the parameters in the
opt_p_num CasADi structured Data.

Typically, opt_p_num is prepared for the current iteration in the make_step() method.
It is, however, valid and possible to directly set paramters in opt_p_num before calling solve().

The method updates the opt_p_num and opt_x_num attributes of the class.
By resetting opt_x_num to the current solution, the method implicitly
enables warmstarting the optimizer for the next iteration, since this vector is always used as the initial guess.

Warning

The method is part of the public API but it is generally not advised to use it.
Instead we recommend to call make_step() at each iterations, which acts as a wrapper
for solve().

	Raises

	asssertion – Optimizer was not setup yet.

	Returns

	None

	Return type

	None

This page is auto-generated. Page source is not available on Github.

 StateFeedback

StateFeedback

	
class do_mpc.estimator.StateFeedback(model)

	Simple state-feedback “estimator”.
The main method StateFeedback.make_step() simply returns the input.
Why do you even bother to use this class?

Attributes

	StateFeedback.t0

	Current time marker of the class.

	StateFeedback.u0

	Initial input and current iterate.

	StateFeedback.x0

	Initial state and current iterate.

	StateFeedback.z0

	Initial algebraic state and current iterate.

Methods

	StateFeedback.make_step

	Return the measurement y0.

	StateFeedback.reset_history

	Reset the history of the estimator

This page is auto-generated. Page source is not available on Github.

 t0

t0

Class attribute.

	
StateFeedback.t0

	Current time marker of the class.
Use this property to set of query the time.

Set with int, float, numpy.ndarray or casadi.DM type.

This page is auto-generated. Page source is not available on Github.

 u0

u0

Class attribute.

	
StateFeedback.u0

	Initial input and current iterate.
This is the numerical structure holding the information about the current input
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_u','heating', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.u0['heating', 0] # 0th element of variable
mpc.u0['heating'] # all elements of variable
mpc.u0['heating', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 x0

x0

Class attribute.

	
StateFeedback.x0

	Initial state and current iterate.
This is the numerical structure holding the information about the current states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_x','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.x0['temperature', 0] # 0th element of variable
mpc.x0['temperature'] # all elements of variable
mpc.x0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 z0

z0

Class attribute.

	
StateFeedback.z0

	Initial algebraic state and current iterate.
This is the numerical structure holding the information about the current algebraic states
in the class. The property can be indexed according to the model definition.

Example:

model = do_mpc.model.Model('continuous')
model.set_variable('_z','temperature', shape=(4,1))

...
mhe = do_mpc.estimator.MHE(model)
or
mpc = do_mpc.estimator.MPC(model)

Get or set current value of variable:
mpc.z0['temperature', 0] # 0th element of variable
mpc.z0['temperature'] # all elements of variable
mpc.z0['temperature', 0:2] # 0th and 1st element

Useful CasADi symbolic structure methods:

	.shape

	.keys()

	.labels()

This page is auto-generated. Page source is not available on Github.

 make_step

make_step

Class method.

	
do_mpc.estimator.StateFeedback.make_step(self, y0)

	Return the measurement y0.

This page is auto-generated. Page source is not available on Github.

 reset_history

reset_history

Class method.

	
do_mpc.estimator.StateFeedback.reset_history(self)

	Reset the history of the estimator

This page is auto-generated. Page source is not available on Github.

 data

data

Classes

	Data

	do-mpc data container.

	MPCData

	do-mpc data container for the do_mpc.controller.MPC instance.

Functions

	load_results

	Simple wrapper to open and unpickle a file.

	save_results

	Exports the data objects from the do-mpc modules in save_list as a pickled file.

This page is auto-generated. Page source is not available on Github.

 Data

Data

	
class do_mpc.data.Data(model)

	do-mpc data container. An instance of this class is created for the active do-mpc classes,
e.g. do_mpc.simulator.Simulator, do_mpc.estimator.MHE.

The class is initialized with an instance of the do_mpc.model.Model which contains all
information about variables (e.g. states, inputs etc.).

The Data class has a public API but is mostly used by other do-mpc classes, e.g. updated in the .make_step calls.

	
__getitem__(ind)

	Query data fields. This method can be used to obtain the stored results in the Data instance.

The full list of available fields can be inspected with:

print(data.data_fields)

The dict also denotes the dimension of each field.

The method allows for power indexing the results for the fields
_x, _u, _z, _tvp, _p, _aux, _y
where further indices refer to the configured variables in the do_mpc.model.Model instance.

Example:

Assume the following model was used (excerpt):
model = do_mpc.model.Model('continuous')

model.set_variable('_x', 'Temperature', shape=(5,1)) # Vector
model.set_variable('_p', 'disturbance', shape=(3,3)) # Matrix
model.set_variable('_u', 'heating') # scalar

...

the model was used (among others) for the MPC controller
mpc = do_mpc.controller.MPC(model)

...

Query the mpc.data instance:
mpc.data['_x'] # Return all states
mpc.data['_x', 'Temperature'] # Return the 5 temp states
mpc.data['_x', 'Temperature', :2] # Return the first 2 temp. states
mpc.data['_p', 'disturbance', 0, 2] # Matrix allows for further indices

Other fields can also be queried, e.g.:
mpc.data['_time'] # current time
mpc.data['t_wall_total'] # optimizer runtime
These do not allow further indices.

	Returns

	Returns the queried data field (for all time instances)

	Return type

	numpy.ndarray

Methods

	Data.export

	The export method returns a dictionary of the stored data.

	Data.init_storage

	Create new (empty) arrays for all variables.

	Data.set_meta

	Set meta data for the current instance of the data object.

	Data.update

	Update value(s) of the data structure with key word arguments.

This page is auto-generated. Page source is not available on Github.

 export

export

Class method.

	
do_mpc.data.Data.export(self)

	The export method returns a dictionary of the stored data.

	Returns

	Dictionary of the currently stored data.

	Return type

	dict

This page is auto-generated. Page source is not available on Github.

 init_storage

init_storage

Class method.

	
do_mpc.data.Data.init_storage(self)

	Create new (empty) arrays for all variables.
The variables of interest are listed in the data_fields dictionary,
with their respective dimension. This dictionary may be updated.
The do_mpc.controller.MPC class adds for example optimizer information.

This page is auto-generated. Page source is not available on Github.

 set_meta

set_meta

Class method.

	
do_mpc.data.Data.set_meta(self, **kwargs)

	Set meta data for the current instance of the data object.

This page is auto-generated. Page source is not available on Github.

 update

update

Class method.

	
do_mpc.data.Data.update(self, **kwargs)

	Update value(s) of the data structure with key word arguments.
These key word arguments must exist in the data fields of the data objective.
See self.data_fields for a complete list of data fields.

Example:

_x = np.ones((1, 3))
_u = np.ones((1, 2))
data.update('_x': _x, '_u': _u)

or:
data.update('_x': _x)
data.update('_u': _u)

Alternatively:
data_dict = {
 '_x':np.ones((1, 3)),
 '_u':np.ones((1, 2))
}

data.update(**data_dict)

	Parameters

	kwargs (casadi.DM or numpy.ndarray) – Arbitrary number of key word arguments for data fields that should be updated.

	Raises

	assertion – Keyword must be in existing data_fields.

	Returns

	None

This page is auto-generated. Page source is not available on Github.

 MPCData

MPCData

	
class do_mpc.data.MPCData(model)

	do-mpc data container for the do_mpc.controller.MPC instance.
This method inherits from Data and extends it to query the MPC predictions.

	
__getitem__(ind)

	Query data fields. This method can be used to obtain the stored results in the Data instance.

The full list of available fields can be inspected with:

print(data.data_fields)

The dict also denotes the dimension of each field.

The method allows for power indexing the results for the fields
_x, _u, _z, _tvp, _p, _aux, _y
where further indices refer to the configured variables in the do_mpc.model.Model instance.

Example:

Assume the following model was used (excerpt):
model = do_mpc.model.Model('continuous')

model.set_variable('_x', 'Temperature', shape=(5,1)) # Vector
model.set_variable('_p', 'disturbance', shape=(3,3)) # Matrix
model.set_variable('_u', 'heating') # scalar

...

the model was used (among others) for the MPC controller
mpc = do_mpc.controller.MPC(model)

...

Query the mpc.data instance:
mpc.data['_x'] # Return all states
mpc.data['_x', 'Temperature'] # Return the 5 temp states
mpc.data['_x', 'Temperature', :2] # Return the first 2 temp. states
mpc.data['_p', 'disturbance', 0, 2] # Matrix allows for further indices

Other fields can also be queried, e.g.:
mpc.data['_time'] # current time
mpc.data['t_wall_total'] # optimizer runtime
These do not allow further indices.

	Returns

	Returns the queried data field (for all time instances)

	Return type

	numpy.ndarray

Methods

	MPCData.export

	The export method returns a dictionary of the stored data.

	MPCData.init_storage

	Create new (empty) arrays for all variables.

	MPCData.prediction

	Query the MPC trajectories.

	MPCData.set_meta

	Set meta data for the current instance of the data object.

	MPCData.update

	Update value(s) of the data structure with key word arguments.

This page is auto-generated. Page source is not available on Github.

 export

export

Class method.

	
do_mpc.data.MPCData.export(self)

	The export method returns a dictionary of the stored data.

	Returns

	Dictionary of the currently stored data.

	Return type

	dict

This page is auto-generated. Page source is not available on Github.

 init_storage

init_storage

Class method.

	
do_mpc.data.MPCData.init_storage(self)

	Create new (empty) arrays for all variables.
The variables of interest are listed in the data_fields dictionary,
with their respective dimension. This dictionary may be updated.
The do_mpc.controller.MPC class adds for example optimizer information.

This page is auto-generated. Page source is not available on Github.

 prediction

prediction

Class method.

	
do_mpc.data.MPCData.prediction(self, ind, t_ind=-1)

	Query the MPC trajectories.
Use this method to obtain specific MPC trajectories from the data object.

Warning

This method requires that the optimal solution is stored in the do_mpc.data.MPCData instance.
Storing the optimal solution must be activated with do_mpc.controller.MPC.set_param().

Querying predicted trajectories requires the use of power indices, which is passed as tuple e.g.:

data.prediction((var_type, var_name, i), t_ind)

where

	var_type refers to _x, _u, _z, _tvp, _p, _aux

	var_name refers to the user-defined names in the do_mpc.model.Model

	Use i to index vector valued variables.

The method returns a multidimensional numpy.ndarray. The dimensions refer to:

arr = data.prediction(('_x', 'x_1'))
arr.shape
>> (n_size, n_horizon, n_scenario)

with:

	n_size denoting the number of elements in x_1, where n_size = 1 is a scalar variable.

	n_horizon is the MPC horizon defined with do_mpc.controller.MPC.set_param()

	n_scenario refers to the number of uncertain scenarios (for robust MPC).

Additional to the power index tuple, a time index (t_ind) can be passed to access the prediction for a certain
time.

	Parameters

	ind (tuple) – Power index to query the prediction of a specific variable.

	Returns

	Predicted trajectories for the queries variable.

	Return type

	numpy.ndarray

This page is auto-generated. Page source is not available on Github.

 set_meta

set_meta

Class method.

	
do_mpc.data.MPCData.set_meta(self, **kwargs)

	Set meta data for the current instance of the data object.

This page is auto-generated. Page source is not available on Github.

 update

update

Class method.

	
do_mpc.data.MPCData.update(self, **kwargs)

	Update value(s) of the data structure with key word arguments.
These key word arguments must exist in the data fields of the data objective.
See self.data_fields for a complete list of data fields.

Example:

_x = np.ones((1, 3))
_u = np.ones((1, 2))
data.update('_x': _x, '_u': _u)

or:
data.update('_x': _x)
data.update('_u': _u)

Alternatively:
data_dict = {
 '_x':np.ones((1, 3)),
 '_u':np.ones((1, 2))
}

data.update(**data_dict)

	Parameters

	kwargs (casadi.DM or numpy.ndarray) – Arbitrary number of key word arguments for data fields that should be updated.

	Raises

	assertion – Keyword must be in existing data_fields.

	Returns

	None

This page is auto-generated. Page source is not available on Github.

 load_results

load_results

	
do_mpc.data.load_results(file_name)

	Simple wrapper to open and unpickle a file.
If used for do-mpc results, this will return a dictionary with the stored do-mpc modules:

	do_mpc.controller.MPC

	do_mpc.simulator.Simulator

	do_mpc.estimator.Estimator

	Parameters

	file_name (str) – File name (including path) for the file to be opened and unpickled.

 save_results

save_results

	
do_mpc.data.save_results(save_list, result_name='results', result_path='./results/', overwrite=False)

	Exports the data objects from the do-mpc modules in save_list as a pickled file. Supply any, all or a selection of (as a list):

	do_mpc.controller.MPC

	do_mpc.simulator.Simulator

	do_mpc.estimator.Estimator

These objects can be used in post-processing to create graphics with the do_mpc.graphics_backend.

	Parameters

	
	save_list (list) – List of the objects to be stored.

	result_name (string, optional) – Name of the result file, defaults to ‘result’.

	result_path (string, optional) – Result path, defaults to ‘./results/’.

	overwrite (bool, optional) – Option to overwrite existing results, defaults to False. Index will be appended if file already exists.

	Raises

	
	assertion – save_list must be a list.

	assertion – result_name must be a string.

	assertion – results_path must be a string.

	assertion – overwrite must be boolean.

	Exception – save_list contains object which is neither do_mpc simulator, optimizizer nor estimator.

	Returns

	None

	Return type

	None

 graphics

graphics

Classes

	Graphics

	Graphics module to present the results of do-mpc.

Functions

	animate

	Animation helper function.

	default_plot

	Pass a do_mpc.data.Data object and create a default do-mpc plot.

This page is auto-generated. Page source is not available on Github.

 Graphics

Graphics

	
class do_mpc.graphics.Graphics(data)

	Graphics module to present the results of do-mpc.
The module is independent of all other modules and can be used optionally.
The module can also be used with pickled result files in post-processing for flexible and custom graphics.

The graphics module is based on Matplotlib and allows for fully customizable, publication ready graphics and animations.

The Graphics module is initialized with an do_mpc.data.Data or do_mpc.data.MPCData
module and will showcase this data.

User defined graphics are configured prior to plotting results, e.g.:

mpc = do_mpc.controller.MPC(model)
...

Initialize graphic:
graphics = do_mpc.graphics.Graphics(mpc.data)

Create figure with arbitrary Matplotlib method
fig, ax = plt.subplots(5, sharex=True)
Configure plot (pass the previously obtained ax objects):
graphics.add_line(var_type='_x', var_name='C_a', axis=ax[0])
graphics.add_line(var_type='_x', var_name='C_b', axis=ax[0])
graphics.add_line(var_type='_x', var_name='T_R', axis=ax[1])
graphics.add_line(var_type='_x', var_name='T_K', axis=ax[1])
graphics.add_line(var_type='_aux', var_name='T_dif', axis=ax[2])
graphics.add_line(var_type='_u', var_name='Q_dot', axis=ax[3])
graphics.add_line(var_type='_u', var_name='F', axis=ax[4])
Optional configuration of the plot(s) with matplotlib:
ax[0].set_ylabel('c [mol/l]')
ax[1].set_ylabel('Temperature [K]')
ax[2].set_ylabel('\Delta T [K]')
ax[3].set_ylabel('Q_heat [kW]')
ax[4].set_ylabel('Flow [l/h]')

fig.align_ylabels()

After initializing the Graphics module,
the Graphics.add_line() method is used to define which results are to be plotted on which existing axes object.
The method created (empty) line objects for each plotted variable.
The graphic is updated with the most recent data with Graphics.plot_results().
Furthermore, the module contains the Graphics.plot_predictions() method which is applicable only for do_mpc.data.MPCData,
and can be used to show the predicted trajectories.

Note

A high-level API for obtaining a configured Graphics module is the default_plot() function.
Use this function and the obtained Graphics module in the developement process.

Animations can be setup with the follwing loop:

for k in range(50):
 u0 = mpc.make_step(x0)
 y_next = simulator.make_step(u0)
 x0 = estimator.make_step(y_next)

 graphics.plot_results()
 graphics.plot_predictions()
 graphics.reset_axes()
 plt.show()
 plt.pause(0.01)

	Parameters

	data (do_mpc.data.Data or do_mpc.data.MPCData) – Data object from the do-mpc modules (simulator, estimator, controller)

Attributes

	Graphics.pred_lines

	Structure that holds the prediction line objects.

	Graphics.result_lines

	Structure that holds the result line objects.

Methods

	Graphics.add_line

	add_line is called during setting up the Graphics class.

	Graphics.clear

	Clears all data from lines.

	Graphics.plot_predictions

	Plots the predicted trajectories for the plot configuration.

	Graphics.plot_results

	Plots the results stored in the data object.

	Graphics.reset_axes

	Relimits and scales all axes.

	Graphics.reset_prop_cycle

	Resets the property cycle for all axes which were passed with Graphics.add_line().

This page is auto-generated. Page source is not available on Github.

 pred_lines

pred_lines

Class attribute.

	
Graphics.pred_lines

	Structure that holds the prediction line objects.
Query this structure with power indices.
The power indices must have the following order:

pred_lines[var_type, var_name, i, k]

where

	var_type refers to _x, _u, _z, _tvp, _p, _aux

	var_name refers to the user-defined names in the do_mpc.model.Model

	Use i to index vector valued variables (choose 0 for scalars).

	Use k to select the k-th scenario (for robust MPC). Note the k=0 is the nominal case.

Note that (e.g.) pred_lines['_x'] will return all lines for all states and
pred_lines.full can be used to retrieve all line objects.

This property can be used to query and configure specific lines in the current graphic.

Example:

Update properties for all lines:
for line_i in graphics.pred_lines.full:
 line_i.set_linewidth(2)
 line_i.set_alpha(0.5)

An extensive list of all line properties can be found here [https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.lines.Line2D.html].

	Parameters

	powerind (tuple) – Tuple of indices (power indices) to obtain the desired line obects

	Returns

	List of line objects.

	Return type

	list

This page is auto-generated. Page source is not available on Github.

 result_lines

result_lines

Class attribute.

	
Graphics.result_lines

	Structure that holds the result line objects.
Query this structure with power indices.
The power indices must have the following order:

result_lines[var_type, var_name, i]

where

	var_type refers to _x, _u, _z, _tvp, _p, _aux

	var_name refers to the user-defined names in the do_mpc.model.Model

	Index i is applicable if the selecte variable is vector valued.

Note that (e.g.) result_lines['_x'] will return all lines for all states and
result_lines.full can be used to retrieve all line objects.

This property can be used to query and configure specific lines in the current graphic.

Example:

Update properties for all lines:
for line_i in graphics.result_lines.full:
 line_i.set_linewidth(2)
 line_i.set_alpha(0.5)

An extensive list of all line properties can be found here [https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.lines.Line2D.html].

	Parameters

	powerind (tuple) – Tuple of indices (power indices) to obtain the desired line obects

	Returns

	List of line objects.

	Return type

	list

This page is auto-generated. Page source is not available on Github.

 add_line

add_line

Class method.

	
do_mpc.graphics.Graphics.add_line(self, var_type, var_name, axis, **pltkwargs)

	add_line is called during setting up the Graphics class. This is typically the last step of configuring do-mpc.
Each call of Graphics.add_line() adds a line to the passed axis according to the variable type
(_x, _u, _z, _tvp, _p, _aux)
and its name (as defined in the do_mpc.model.Model).
Furthermore, all valid matplotlib .plot arguments can be passed as optional keyword arguments,
e.g.: linewidth, color, alpha.

Note

Lines can also be configured after adding them with this method.
Use the result_lines() and pred_lines() attributes for this purpose.

	Parameters

	
	var_type (string) – Variable type to be plotted. Valid arguments are _x, _u, _z, _tvp, _p, _aux.

	var_name (string) – Variable name. Must reference the names defined in the model for the given variable type.

	axis (matplotlib.axes.Axes object.) – Axis object on which to plot the line(s).

	pltkwargs (optional) – Valid matplotlib pyplot keyword arguments (e.g.: linewidth, color, alpha)

	Raises

	
	assertion – var_type argument must be a string

	assertion – var_name argument must be a string

	assertion – var_type argument must reference to the valid var_types of do-mpc models.

	assertion – axis argument must be matplotlib axes object.

This page is auto-generated. Page source is not available on Github.

 clear

clear

Class method.

	
do_mpc.graphics.Graphics.clear(self, lines=None)

	Clears all data from lines.

This page is auto-generated. Page source is not available on Github.

 plot_predictions

plot_predictions

Class method.

	
do_mpc.graphics.Graphics.plot_predictions(self, t_ind=-1)

	Plots the predicted trajectories for the plot configuration.
The predicted trajectories are part of the optimal solution at each timestep
and are optionally stored in the do_mpc.data.MPCData object.

Warning

This method requires that the optimal solution is stored in the do_mpc.data.MPCData instance.
Storing the optimal solution must be activated with do_mpc.controller.MPC.set_param().

The plot_predictions method can only be called with data from the do_mpc.controller.MPC object
and raises an error if called with data from other objects.
Use the t_ind parameter to plot the prediction for the given time instance.
This can be used in post-processing for animations.

	Parameters

	t_ind (int) – Plot predictions at this time index.

	Raises

	
	assertion – Can only call plot_predictions with data object from do-mpc optimizer

	Exception – Cannot plot predictions if full solution is not stored or supplied when calling the method

	assertion – t_ind argument must be a int

	assertion – t_ind argument must not exceed the length of the results

	Returns

	None

This page is auto-generated. Page source is not available on Github.

 plot_results

plot_results

Class method.

	
do_mpc.graphics.Graphics.plot_results(self, t_ind=-1)

	Plots the results stored in the data object.
Use the t_ind parameter to plot only until the given time index. This can be used in post-processing for animations.

	Parameters

	t_ind (int) – Plot results up until this time index.

	Raises

	
	assertion – t_ind argument must be a int

	assertion – t_ind argument must not exceed the length of the results

	Returns

	None.

This page is auto-generated. Page source is not available on Github.

 reset_axes

reset_axes

Class method.

	
do_mpc.graphics.Graphics.reset_axes(self)

	Relimits and scales all axes.
This method calls

ax.relim()
ax.autoscale()

on all axes instances in the class.

This page is auto-generated. Page source is not available on Github.

 reset_prop_cycle

reset_prop_cycle

Class method.

	
do_mpc.graphics.Graphics.reset_prop_cycle(self)

	Resets the property cycle for all axes which were passed with Graphics.add_line().
The matplotlib color cycler is restarted.

This page is auto-generated. Page source is not available on Github.

 animate

animate

	
do_mpc.graphics.animate(graphics, fig, n_steps=None, export_path='./', export_name='animation', overwrite=False, format='gif', fps=5, writer=None)

	Animation helper function.

Call this function with a configured Graphics instance and the respective figure.
This function will export an animation with the results from the do_mpc.data.Data object.

Either specify format and fps or supply a configured writer (e.g. ImageMagickWriter for gifs).

	Parameters

	
	graphics (Graphics) – Configured Graphics instance.

	fig (Matplotlib Figure.) – Matplotlib Figure.

	n_steps (int) – (Optional) number of time steps for the animation.

	export_path (str) – (Optional) Path where to export the animation. Directory will be created if it doesn’t exist.

	export_name (str) – (Optional) Name of the resulting animation (gif/mp4) file.

	overwrite (bool) – (Optional) Check if export_name already exists in the supplied directory and overwrite or alter export_name.

	format (str) – (Optional) Choose between gif or mp4.

	fps (int) – (Optional) Frames per second for the resulting animation.

	writer (writer class) – (Optional) If supplied, the fps and format argument are discarded. Use this to configure your own writer.

	Returns

	None

 default_plot

default_plot

	
do_mpc.graphics.default_plot(data, states_list=None, inputs_list=None, aux_list=None, **kwargs)

	Pass a do_mpc.data.Data object and create a default do-mpc plot.
By default all states, inputs and auxiliary expressions are plotted on individual axes.
Pass lists of states, inputs and aux names (string) to plot only a subset of these
trajectories.

Returns a figure, axis and configured Graphics object.

	Parameters

	
	model (do_mpc.data.Data or do_mpc.data.MPCData) – do-mpc data instance.

	states_list (list) – List of strings containing a subset of state names defined in py:class:do_mpc.model.Model. These states are plotted.

	inputs_list (list) – List of strings containing a subset of input names defined in py:class:do_mpc.model.Model. These inputs are plotted.

	aux_list (list) – List of strings containing a subset of auxiliary expression names defined in py:class:do_mpc.model.Model. These values are plotted.

	kwargs – Further arguments are passed to the call of plt.subplots(n_plot, 1, sharex=True, **kwargs).

	Returns

	
	fig (Matplotlib figure)

	ax (Matplotlib axes)

	configured Graphics object (Graphics)

 samplingplanner

samplingplanner

Classes

	SamplingPlanner

	A class for generating sampling plans.

This page is auto-generated. Page source is not available on Github.

 SamplingPlanner

SamplingPlanner

	
class do_mpc.sampling.samplingplanner.SamplingPlanner

	A class for generating sampling plans.
These sampling plans will be executed by do_mpc.sampling.sampler.Sampler to generate data.

Configuration and sampling plan generation:

	Set variables which should be sampled with set_sampling_var().

	(Optional) Set further options of the SamplingPlanner with set_param()

	Generate the sampling plan with gen_sampling_plan().

	And / or: Add specific sampling case with add_sampling_case().

	Export the plan with all sampling cases with export()

Attributes

	SamplingPlanner.data_dir

	Set the save directory for the samplingplan.

Methods

	SamplingPlanner.add_sampling_case

	Manually add sampling case with user-defined values.

	SamplingPlanner.export

	Export SamplingPlan in pickle format.

	SamplingPlanner.gen_sampling_plan

	Generate the sampling plan.

	SamplingPlanner.set_param

	Set the parameters of the SamplingPlanner class.

	SamplingPlanner.set_sampling_var

	Introduce new sampling variables to the SamplingPlanner.

This page is auto-generated. Page source is not available on Github.

 data_dir

data_dir

Class attribute.

	
SamplingPlanner.data_dir

	Set the save directory for the samplingplan.
If the directory does not exist yet, it is created. If the directory is nested all (non-existing)
parent folders are also created.

Example:

sp = do_mpc.sampling.SamplingPlanner()
sp.data_dir = './samples/experiment_1/'

This will set the directory to the indicated path. If the path does not exist, all folders are created.

This page is auto-generated. Page source is not available on Github.

 add_sampling_case

add_sampling_case

Class method.

	
do_mpc.sampling.samplingplanner.SamplingPlanner.add_sampling_case(self, **kwargs)

	Manually add sampling case with user-defined values.
Create a sampling case by choosing values for the previously introduced sampling variables (with set_sampling_var()).

Method takes arbitrary (keyword, argument) pairs, where the keywords must refer to previously introduced sampling variables.
add_sampling_case() will automatically augment the sampling case with values for variables that are not passed as arguments.
This only works if these variables were created with the argument fun_var_pdf.

Example:

sp = do_mpc.sampling.SamplingPlanner()

Plan with two variables alpha and beta:
sp.set_sampling_var('alpha', np.random.randn)
sp.set_sampling_var('beta', lambda: np.random.randint(0,5))

Create two new sampling cases, missing variable is auto-generated:
sp.add_sampling_case(alpha=1)
sp.add_sampling_case(beta= 0)

This page is auto-generated. Page source is not available on Github.

 export

export

Class method.

	
do_mpc.sampling.samplingplanner.SamplingPlanner.export(self, sampling_plan_name)

	Export SamplingPlan in pickle format.
Pass sampling_plan_name without any path. File extension can be added (but will be stripped automatically).
Change the path with data_dir.

	Parameters

	sampling_plan_name (str) – Name of the exported sampling plan file.

	Raises

	assertion – sampling_plan_name must be string.

This page is auto-generated. Page source is not available on Github.

 gen_sampling_plan

gen_sampling_plan

Class method.

	
do_mpc.sampling.samplingplanner.SamplingPlanner.gen_sampling_plan(self, n_samples)

	Generate the sampling plan. The generated plan contains n_samples samples based on the defined variables and the corresponding evaluation functions.

	Parameters

	n_samples (int) – The number of generated samples

	Raises

	assertion – n_samples must be int

	Returns

	Returns the newly created sampling plan.

	Return type

	list

This page is auto-generated. Page source is not available on Github.

 set_param

set_param

Class method.

	
do_mpc.sampling.samplingplanner.SamplingPlanner.set_param(self, **kwargs)

	Set the parameters of the SamplingPlanner class. Parameters must be passed as pairs of valid keywords and respective argument.
For example:

sp.set_param(overwrite = True)

It is also possible and convenient to pass a dictionary with multiple parameters simultaneously as shown in the following example:

setup_dict = {
 'overwrite': True,
 'save_format': pickle,
}
sp.set_param(**setup_dict)

This makes use of thy python “unpack” operator. See more details here [https://codeyarns.github.io/tech/2012-04-25-unpack-operator-in-python.html].

Note

set_param() can be called multiple times. Previously passed arguments are overwritten by successive calls.

The following parameters are available:

	Parameters

	
	overwrite (bool) – Overwrites existing samplingplan under the same name, if set to True.

	id_precision (string) – Padding for IDs of created samples. Defaults to 3. This means sample 20 will be denoted as 020.

This page is auto-generated. Page source is not available on Github.

 set_sampling_var

set_sampling_var

Class method.

	
do_mpc.sampling.samplingplanner.SamplingPlanner.set_sampling_var(self, name, fun_var_pdf=None)

	Introduce new sampling variables to the SamplingPlanner. Define variable name.
Optionally add a function to generate values for the sampled variable (e.g. following some distribution).
The parameter fun_var_pdf defaults to None.

Note

If no value-generating function is passed (for any of the introduced variables),
all sampling cases must be created manually with add_sampling_case().

Note

Value generating function fun_var_pdf must not require inputs.

Example:

sp = do_mpc.sampling.SamplingPlanner()

Plan with two variables alpha and beta:
sp.set_sampling_var('alpha', np.random.randn)
sp.set_sampling_var('beta', lambda: np.random.randint(0,5))

In the example we have passed a BuiltinFunction for the introduced variable alpha.
We use the function that created values from the random normal distribution with zero mean and unity covariance.
For the variable beta we created a new lambda function that draws random integers from 0 to 5.

	Parameters

	
	name (string) – Name of the sampled variable

	fun_var_pdf (Function of BuiltinFunction) – Declare the value-generating function of the sampled variable

	Raises

	
	assertion – name must be string

	assertion – fun_var_pdf must be Function or BuiltinFunction

This page is auto-generated. Page source is not available on Github.

 sampler

sampler

Classes

	Sampler

	Generate samples based on a sampling plan.

This page is auto-generated. Page source is not available on Github.

 Sampler

Sampler

	
class do_mpc.sampling.sampler.Sampler(sampling_plan)

	Generate samples based on a sampling plan.
Initiate the class by passing a do_mpc.sampling.samplingplanner.SamplingPlanner (sampling_plan) object.
The class can be configured to create samples based on the defined cases in the sampling_plan.

Configuration and sampling:

	(Optional) use set_param() to configure the class. Use data_dir to choose the save location for the samples.

	Set the sample generating function with set_sample_function(). This function is executed for each of the samples in the sampling_plan.

	Use sample_data() to generate all samples defined in the sampling_plan. A new file is written for each sample.

	Or: Create an individual sample result with sample_idx(), where an index (int) referring to the sampling_plan determines the sampled case.

Note

By default, the Sampler will only create samples that do not already exist in the chosen data_dir.

Example:

sp = do_mpc.sampling.SamplingPlanner()

Plan with two variables alpha and beta:
sp.set_sampling_var('alpha', np.random.randn)
sp.set_sampling_var('beta', lambda: np.random.randint(0,5))

plan = sp.gen_sampling_plan(n_samples=10)

sampler = do_mpc.sampling.Sampler(plan)

Sampler computes the product of two variables alpha and beta
that were created in the SamplingPlanner:

def sample_function(alpha, beta):
 return alpha*beta

sampler.set_sample_function(sample_function)

sampler.sample_data()

Attributes

	Sampler.data_dir

	Set the save directory for the results.

Methods

	Sampler.sample_data

	Sample data after having configured the Sampler.

	Sampler.sample_idx

	Sample case based on the index of the sample.

	Sampler.set_param

	Configure the Sampler class.

	Sampler.set_sample_function

	Set sample generating function.

This page is auto-generated. Page source is not available on Github.

 data_dir

data_dir

Class attribute.

	
Sampler.data_dir

	Set the save directory for the results.
If the directory does not exist yet, it is created. If the directory is nested all (non-existing)
parent folders are also created.

Example:

sampler = do_mpc.sampling.Sampler()
sampler.data_dir = './samples/experiment_1/'

This will set the directory to the indicated path. If the path does not exist, all folders are created.

This page is auto-generated. Page source is not available on Github.

 sample_data

sample_data

Class method.

	
do_mpc.sampling.sampler.Sampler.sample_data(self)

	Sample data after having configured the Sampler.
No user input is required and the method will iterate through all the items defined in the sampling_plan
(obtained with do_mpc.sampling.samplingplanner.SamplingPlanner).

Note

Depending on your sample_function (set with set_sample_function()) and the total number of samples, executing this method may take some time.

Note

If sampler.set_param(overwrite = False) (default) data will only be sampled for instances that do not yet exist.

This page is auto-generated. Page source is not available on Github.

 sample_idx

sample_idx

Class method.

	
do_mpc.sampling.sampler.Sampler.sample_idx(self, idx)

	Sample case based on the index of the sample.

	Parameters

	idx (int) – Index of the sampling_plan for which the sample should be created.

	Raises

	
	assertion – Index must be between 0 and n_samples.

	assertion – sample_function must be set prior to sampling data.

This page is auto-generated. Page source is not available on Github.

 set_param

set_param

Class method.

	
do_mpc.sampling.sampler.Sampler.set_param(self, **kwargs)

	Configure the Sampler class.

Parameters must be passed as pairs of valid keywords and respective argument.
For example:

sampler.set_param(overwrite = True)

	Parameters

	
	overwrite (bool) – Should previously created results be overwritten. Default is False

	sample_name (str) – Naming scheme for samples.

	Save_format

	Choose either pickle or mat.

	Print_progress

	Print progress-bar to terminal. Default is True.

This page is auto-generated. Page source is not available on Github.

 set_sample_function

set_sample_function

Class method.

	
do_mpc.sampling.sampler.Sampler.set_sample_function(self, sample_function)

	Set sample generating function.
The sampling function produces a sample result for each sample definition in the sampling_plan
and is called in the method sample_data().

It is important that the sample function only uses keyword arguments with the same name as previously defined in the sampling_plan.

Example:

sp = do_mpc.sampling.SamplingPlanner()

sp.set_sampling_var('alpha', np.random.randn)
sp.set_sampling_var('beta', lambda: np.random.randint(0,5))

sampler = do_mpc.sampling.Sampler(plan)

def sample_function(alpha, beta):
 return alpha*beta

sampler.set_sample_function(sample_function)

	Parameters

	sample_function (FunctionType) – Function to create each sample of the sampling plan.

This page is auto-generated. Page source is not available on Github.

 datahandler

datahandler

Classes

	DataHandler

	Post-processing data created from a sampling plan.

This page is auto-generated. Page source is not available on Github.

 DataHandler

DataHandler

	
class do_mpc.sampling.datahandler.DataHandler(sampling_plan)

	Post-processing data created from a sampling plan.
Data (individual samples) were created with do_mpc.sampling.sampler.Sampler.
The list of all samples originates from do_mpc.sampling.samplingplanner.SamplingPlanner and is used to
initiate this class (sampling_plan).

Configuration and retrieving processed data:

	Initiate the object with the sampling_plan originating from do_mpc.sampling.samplingplanner.SamplingPlanner.

	Set parameters with set_param(). Most importantly, the directory in which the individual samples are located should be passe with data_dir argument.

	(Optional) set one (or multiple) post-processing functions. These functions are applied to each loaded sample and can, e.g., extract or compile important information.

	Load and return samples either by indexing with the __getitem__() method or by filtering with filter().

Example:

sp = do_mpc.sampling.SamplingPlanner()

Plan with two variables alpha and beta:
sp.set_sampling_var('alpha', np.random.randn)
sp.set_sampling_var('beta', lambda: np.random.randint(0,5))

plan = sp.gen_sampling_plan(n_samples=10)

sampler = do_mpc.sampling.Sampler(plan)

Sampler computes the product of two variables alpha and beta
that were created in the SamplingPlanner:

def sample_function(alpha, beta):
 return alpha*beta

sampler.set_sample_function(sample_function)

sampler.sample_data()

Create DataHandler object with same plan:
dh = do_mpc.sampling.DataHandler(plan)

Assume you want to compute the square of the result of each sample
dh.set_post_processing('square', lambda res: res**2)

As well as the value itself:
dh.set_post_processing('default', lambda res: res)

Query all post-processed results with:
dh[:]

Attributes

	DataHandler.data_dir

	Set the directory where the results are stored.

Methods

	DataHandler.filter

	Filter data from the DataHandler.

	DataHandler.set_param

	Set the parameters of the DataHandler.

	DataHandler.set_post_processing

	Set a post processing function.

This page is auto-generated. Page source is not available on Github.

 data_dir

data_dir

Class attribute.

	
DataHandler.data_dir

	Set the directory where the results are stored.

This page is auto-generated. Page source is not available on Github.

 filter

filter

Class method.

	
do_mpc.sampling.datahandler.DataHandler.filter(self, input_filter=None, output_filter=None)

	Filter data from the DataHandler. Filters can be applied to inputs or to results that were obtained with the post-processing functions.
Filtering returns only a subset from the created samples based on arbitrary conditions.

Example:

sp = do_mpc.sampling.SamplingPlanner()

SamplingPlanner with two variables alpha and beta:
sp.set_sampling_var('alpha', np.random.randn)
sp.set_sampling_var('beta', lambda: np.random.randint(0,5))
plan = sp.gen_sampling_plan()

...

dh = do_mpc.sampling.DataHandler(plan)
dh.set_post_processing('square', lambda res: res**2)

Return all samples with alpha < 0 and beta > 2
dh.filter(input_filter = lambda alpha, beta: alpha < 0 and beta > 2)
Return all samples for which the computed value square < 5
dh.filter(output_filter = lambda square: square < 5)

	Parameters

	filter_fun – Function to filter the data.

	Raises

	
	assertion – No post processing function is set

	assertion – filter_fun must be either Function of BuiltinFunction_or_Method

	Returns

	Returns the post processed samples that satisfy the filter

	Return type

	dict

This page is auto-generated. Page source is not available on Github.

 set_param

set_param

Class method.

	
do_mpc.sampling.datahandler.DataHandler.set_param(self, **kwargs)

	Set the parameters of the DataHandler.

Parameters must be passed as pairs of valid keywords and respective argument.
For example:

datahandler.set_param(overwrite = True)

	Parameters

	
	data_dir (bool) – Directory where the data can be found (as defined in the do_mpc.sampling.sampler.Sampler).

	sample_name (str) – Naming scheme for samples (as defined in the do_mpc.sampling.sampler.Sampler).

	Save_format

	Choose either pickle or mat (as defined in the do_mpc.sampling.sampler.Sampler).

This page is auto-generated. Page source is not available on Github.

 set_post_processing

set_post_processing

Class method.

	
do_mpc.sampling.datahandler.DataHandler.set_post_processing(self, name, post_processing_function)

	Set a post processing function.
The post processing function is applied to all loaded samples, e.g. with __getitem__() or filter().
Users can set an arbitrary amount of post processing functions by repeatedly calling this method.

The post_processing_function can have two possible signatures:

	post_processing_function(case_definition, sample_result)

	post_processing_function(sample_result)

Where case_definition is a dict of all variables introduced in the do_mpc.sampling.samplingplanner.SamplingPlanner
and sample_results is the result obtained from the function introduced with do_mpc.sampling.sampler.Sampler.set_sample_function.

Note

Setting a post processing function with an already existing name will overwrite the previously set post processing function.

Example:

sp = do_mpc.sampling.SamplingPlanner()

Plan with two variables alpha and beta:
sp.set_sampling_var('alpha', np.random.randn)
sp.set_sampling_var('beta', lambda: np.random.randint(0,5))

plan = sp.gen_sampling_plan(n_samples=10)

sampler = do_mpc.sampling.Sampler(plan)

Sampler computes the product of two variables alpha and beta
that were created in the SamplingPlanner:

def sample_function(alpha, beta):
 return alpha*beta

sampler.set_sample_function(sample_function)

sampler.sample_data()

Create DataHandler object with same plan:
dh = do_mpc.sampling.DataHandler(plan)

Assume you want to compute the square of the result of each sample
dh.set_post_processing('square', lambda res: res**2)

As well as the value itself:
dh.set_post_processing('default', lambda res: res)

Query all post-processed results with:
dh[:]

	Parameters

	
	name (string) – Name of the output of the post-processing operation

	post_processing_function – The post processing function to be evaluted

	Raises

	
	assertion – name must be string

	assertion – post_processing_function must be either Function of BuiltinFunction

This page is auto-generated. Page source is not available on Github.

 Release notes

Release notes

This content is autogenereated from our Github release notes [https://github.com/do-mpc/do-mpc/releases].

v4.4.0

Major changes

	MHE/MPC bounds on optimiziation variables can now be changed after calling mhe.setup() and mpc.setup() respectively (fixes #289). The simplest way to set bounds is the mhe.bounds and mpc.bounds property (docs [https://www.do-mpc.com/en/latest/api/do_mpc.controller.MPC.bounds.html])

	More granular control over the bounds is now possible, e.g. choosing different values for each time-step of the horizon or for different collocation points (if that makes sense). For this purpose two now properties lb_opt_x and ub_opt_x are now documented and accessible to the user. These properties are indexed similarly to the property opt_x [https://www.do-mpc.com/en/latest/api/do_mpc.controller.MPC.opt_x.html]. Importantly, setting new values on these structure automatically considers the scaling factors.

	The do-mpc model can now be pickled. Pickling is restricted, however and requires (error messages are thrown otherwise):

	the model class must be setup

	the model must use SX symbolic variables

	Enhanced warmstarting: The solver is now supplied with a guess for the dual variables

Minor changes

	Bug fix: MPCData.prediction [https://www.do-mpc.com/en/latest/api/do_mpc.data.MPCData.prediction.html] was previously unable to query algebraic states _z.

	Fixed #283: Algebraic states can now be plotted with the graphics package

v4.3.5

Minor fixes

	Setup for release in v4.3.4 was incomplete.

v4.3.4

Minor fixes

	model.aux can now be queried before calling model.setup()

	Some typos in documentation

v4.3.3

Major changes

	DataHandler class can now create post_processing_function considering inputs from the case-definition as created in the SamplingPlanner.

Minor changes

	All cost terms that are continuously appended to are now initialised with value DM(0). If nothing is appended (i.e. the term is not active), this avoids unclear error messages. This should fix #214 and #86

Documentation

Minor fixes.

Example files

Please download the example files for release v4.3.3 here [https://github.com/do-mpc/do-mpc/releases/download/v4.3.3/examples.zip].

v4.3.2.

Major fixes

	Solved #215

	Hoping to solve #233

v4.3.1

Fixed an issue with release 4.3.0 where sampling tools where not included on pypi.

v4.3.0

Major changes

do-mpc sampling tools

With this release we are integrated a major new feature in do-mpc which was originally started at the do-mpc developer conference 2021 [https://pas.bci.tu-dortmund.de/professorship/news/details/review-do-mpc-developer-conference-13195/].
To learn more about the new feature we have prepared a video tutorial [https://www.youtube.com/watch?v=3ELyErkYPhE].

Minor changes

	Fixed an issue with saving computation time in MHE/MPC in data object.

	New example: Kite systems

Example files

Please download the example files for release v4.3.0 here [https://github.com/do-mpc/do-mpc/releases/download/v4.3.0/examples.zip].

v4.2.5

Major changes

Full customization of the MPC or MHE optimization problem is now possible.
Instead of using MPC.setup() to finalize the MPC optimization problem, an alternative two step process is now possible:

	MPC.prepare_nlp()

	MPC.create_nlp()

In between these two calls, users can add custom constraints and terms to the cost function using state, input etc. variables from different time-steps, collocation points or scenarios.
A typical example would be to constrain changes of inputs or two enforce a cyclic behavior over the course of the horizon.

The new feature is fully documented and we suggest to have a look at the API reference for the MPC or MHE object.

Backend

Model

Internal functions in do_mpc.model.Model class have now properly named inputs and outputs. These inputs/outputs were previously automatically named i0, i1, They are now name e.g. _x, _u, _z

Here is an example (from the backend):

self._rhs_fun = Function('rhs_fun',
 [_x, _u, _z, _tvp, _p, _w], [self._rhs], ### variables
 ["_x", "_u", "_z", "_tvp", "_p", "_w"], ["_rhs"]) ### names

This may help for debugging because we now have that:

model = do_mpc.model.Model("continuous")
....
model.setup()
print(model._rhs_fun)

Returns

Function(rhs_fun:(_x[6],_u,_z[3],_tvp,_p[2],_w[0])->(_rhs[6]) SXFunction)

v4.2.0

Major changes

MX support

This addresses #34.
The do-mpc model class can now be created with the symvar_type argument, defining whether the model is using CasADi SX or MX optimization variables.

model = do_mpc.model.Model('continuous', 'MX')

all classes (MPC, MHE, Simulator …) created from a MX model will also use MX variables.
From a users-perspective the change has no significant influence on the experience.
It does, however, allow for significantly faster matrix vector operations, which is main motivation to use the MX support.

The new feature resulted in some major changes to the backend.
This is because CasADi does not allow (e.g.):

x = MX.sym('x')
struct_symMX([
 entry('x', sym=x)
])

on which the model configuration heavily relied on.

Most importantly:

	The Model class attributes _x, _u etc. are now dicts prior to calling Model.setup.

	Calling model['x'] still works prior to calling Model.setup but works differently internally

	a new method _convert2struct converts dicts (e.g. of all the states) to symbolic structures (used in Model.setup). The only problem: These structs hold variables with the same name but which are different.

	a new method _substitute_struct_vars is introduced and substitutes the variables in the dicts in all expressions (e.g. _rhs with the new variables from the symbolic structs.

	the MHE also required some major internal changes. The problem is that we split the parameters (_p) for the MHE into estimated and set parameters. Splitting symbolic variables with the MX type is problematic.

Minor changes

	Solved #149 : Option to only have a single slack variable (for each soft-constraint) over the entire horizon

Bug fixes

	Resolves #89. Discrete-time model now inherits its properties to MHE/MPC etc.

v4.1.1

Major changes

Adapted time-varying parameters for MPC object

Time-varying parameters (tvp) are now defined for k=0,...,N+1 as opposed to k=0,...,N in the previous version.
The main consequence is that the mterm for mpc.set_objective can now include the tvp in its expression.
This is beneficial e.g. for set-point tracking.

Documentation

Time-varying parameters are also described in greater detail now in this [https://www.do-mpc.com/en/latest/FAQ.html#time-varying-parameters] article.

do-mpc v4.1.0

Major changes

DAE support

This addresses the long overdue #3 (and closes #36). DAE works for both discrete time and continuous time formulations.

	DAE’s are introduced in the model with the set_alg [https://www.do-mpc.com/en/latest/api/do_mpc.model.Model.set_alg.html] method.

	Algebraic states are introduced with the set_variable [https://www.do-mpc.com/en/latest/api/do_mpc.model.Model.set_variable.html] method and have the var_type='_z'.

	The model checks that for each newly introduced algebraic state there must be one new algebraic equation. Otherwise the problem is under-determined.

	Algebraic states can be scaled and bounded in both MHE and MPC similar to states, inputs etc. The algebraic equations itself are not automatically scaled. This is different for the ODE which is scaled with the scaling factor for its respective state.

Continuous time (orthogonal collocation)

When using DAEs with continuous time models the DAE equation is added as an additional constraint at each collocation point (both for MHE/MPC).

The simulator must use the idasintegration tool (or some other tool supporting DAEs). The default tool cvodes does not support DAE equations.

Discrete time

When using DAEs with continuous time models the DAE equation is added as an additional constraint at each time-step (both for MHE/MPC).

The simulator cannot simply evaluate the discrete time equation to obtain the next state as it is an expression of the unknown algebraic states. Thus we first solve the algebraic equation with the current state, input etc (using nlpsol) and then evaluate the discrete time equation with the obtained algebraic states.

Constraints with MPC / MHE with orthogonal collocation

Added a flag that can be set during MPC / MHE setup to choose whether inequality constraints [https://www.do-mpc.com/en/latest/api/do_mpc.controller.MPC.set_nl_cons.html] are evaluated for each collocation point or only on the beginning of the finite Element.
The flag is set during setup of the MPC / MHE with the set_param [https://www.do-mpc.com/en/latest/api/do_mpc.controller.MPC.set_param.html#do_mpc.controller.MPC.set_param] method:

mpc = do_mpc.controller.MPC(model)
setup_mpc = {
 'n_horizon': 20,
 't_step': 0.005,
 'nl_cons_check_colloc_points': True,
}
mpc.set_param(**setup_mpc)

Currently defaults to False.

Added a flag that can be set during MPC / MHE setup to choose whether bounds [https://www.do-mpc.com/en/latest/api/do_mpc.controller.MPC.bounds.html] (lower and upper) are evaluated for each collocation point or only on the beginning of the finite Element.
The flag is set during setup of the MPC / MHE with the set_param [https://www.do-mpc.com/en/latest/api/do_mpc.controller.MPC.set_param.html#do_mpc.controller.MPC.set_param] method:

mpc = do_mpc.controller.MPC(model)
setup_mpc = {
 'n_horizon': 20,
 't_step': 0.005,
 'cons_check_colloc_points': True,
}
mpc.set_param(**setup_mpc)

Currently defaults to True.

Terminal bounds for MPC

This fixes #35 .

	The MPC controller now supports terminal bounds for the states which can be different to the generic state constraints set with the bounds [https://www.do-mpc.com/en/latest/api/do_mpc.controller.MPC.bounds.html] attribute.

	Set terminal bounds with the new terminal_bounds [https://www.do-mpc.com/en/latest/api/do_mpc.controller.MPC.terminal_bounds.html] attribute.

	If no terminal bounds are explicitly set, they default to the regular state bounds (this means that previously working examples won’t have to add terminal bounds to obtain the same results).

	If this behavior is undesired (e.g. terminal state should be unbounded even though all other states are bounded) set the parameter use_terminal_bounds=False during MPC setup.

Minor changes

	MPC.set_objective: The mterm (terminal cost) now allows parameters (_p) in the formulation.

	Simulator.set_initial_guess: Introduced this method to set the initial guess for the algebraic variables. The guess is based on the class attributes z0 which is inline with how the estimator and controller work.

	Simulator.make_step: No longer takes the initial value/guess for x0 and z0 as arguments. The initial state x0 can be changed via its class attribute whereas the initial guess for z0 is changed as described above.

	Adressed #71 : The initial state is no longer constrained through upper and lower bounds.

	Adressed #65 and removed depreciated methods from all modules.

Documentation

	New non-linear example on the front page (double inverted pendulum with obstacle avoidance). This adresses #70.

	Fixed documentation of MPC.opt_x_num. This fixes #72

Example files

Please download the example files for release do-mpc v4.1.0 here [https://github.com/do-mpc/do-mpc/releases/download/v4.1.0/examples.zip].

do-mpc v4.0.0

We are finally out of beta with do-mpc v4.0.0. Thanks to everyone who has contributed, for the feedback and all the interest.
This release includes some important changes and bugfixes and also significantly extends our homepage do-mpc [https://do-mpc.com].

We hope you will like the new features and content. Development will now continue with work on version 4.1.0 (and potentially some in between versions with minor features). Stay tuned on our Github [https://github.com/do-mpc/do-mpc] page and feel free to open issues or join the discussion!

Major changes

New properties for Simulator, Estimator and MPC

Inheriting from the new class IteratedVariables these classes now obtain the attributes _x0, _u0, _z0 (and _p_est0). Users can access these attributes with the properties with x0, u0, z0 (and p_est0), which are listed in the documentation and have sanity checks etc. when setting them. This fixes e.g. #55.
These new properties are used for two things:

Set initial values

For the simulator the initial state is self explanatory and a very important attribute.
For the MHE and MPC class the attributes are used when calling the important set_initial_guess method, which does exactly that: Set the initial guess of the optimization problem.

Obtain the current values of the iterated variables

This is very useful for conditional MPC loops: E.g. stop the controller and simulation when a certain state has reached a certain value.

Measurement noise

Currently, the do_mpc.model.Model.set_rhs method allows to set an additive process noise.
This is used for the MHE optimization problem.
In a similar fashion, the do_mpc.model.Model.set_meas method now allows to set an additive measurement noise.

In the MHE the measurement noise is introduced as a new optimization variable and the measurement equation is added as an additional constraint.
The full optimization problem now looks like this:
[image: _images/a8f4098802cb7be4aa206f47d94cbadac56b9cd8.png]image
This change makes it possible for the user to decide, which measurements are enforced and which can be perturbed. A typical example would be to ensure that input “measurements” are completely trusted.

Simulator with disturbances

The newly introduced measurement noise and the existing process noise are now used within the simulator. With each call of Simulator.make_step values can be passed to obtain an imperfectly simulated and measured system..

Documentation

	Release notes are now included in the documentation. They are autogenerated from the Github release notes which can be accessed via Rest API.

	The release notes are appended with a section that includes a download link for the example files that were written for the respective versions.

	Installation instructions now refer to these download links. This solves #62 .

	Added new section Example gallery, explaining the supplied examples in do-mpc in Jupyter Notebooks (rendered on readthedocs)

	Added new section Background with various articles explaining the mathematics behind do-mpc.

	Parameter collocation_ni in MPC/MHE is now explained more clearly.

Minor changes

	Renamed model.setup_model() -> model.setup()in all examples. This adresses #38

	opt_p_num and opt_x_num for MHE/MPC are now instance properties instead of class attributes. They still appear in the documentation and can be used as before. Having them as class attributes can lead to problems when multiple classes are live during the same session.

Example files

Please download the example files for release do-mpc v4.0.0 here [https://github.com/do-mpc/do-mpc/releases/download/v4.0.0/examples.zip].

do-mpc v4.0.0-beta3

Major changes

Data

	New __getitem__ method to conveniently retrieve values from Data object (details here [https://github.com/do-mpc/do-mpc/blob/41402152aeb4a2a9b7220434d47c6fa23ca92841/do_mpc/data.py#L75])

	New MPCData class (which inherits form Data). This adds the prediction method, which can be used to query the optimal trajectories. Details here [https://github.com/do-mpc/do-mpc/blob/41402152aeb4a2a9b7220434d47c6fa23ca92841/do_mpc/data.py#L236].

Both methods were previously (in a slightly different form) in the Graphics module. They are still used in this class but can also be convenient under different circumstances.

Graphics

The Graphics module is now initialized with a specific Data instance (e.g. mpc.data). Each Data class has their own Graphics class (if it is supposed to be displayed).
Compared to the previous implementation, we now initialize all lines that are supposed to be plotted (and store them in pred_lines and result_lines). During runtime, the data on these lines is getting updated.

	Added new structure class in do_mpc.tools. Used for tracking the new Graphics properties: pred_lines and result_lines.

	The properties pred_lines and result_lines can be used to retrieve line instances with power indices. Line instances can be easily configured (linestyle, alpha, color etc.)

Process noise

Process noise can be added to rhs of Model class: link [https://github.com/do-mpc/do-mpc/blob/3f11da50cb8ab15798411be1c6400753c83d53e4/do_mpc/model.py#L596]

This is solving issue #53 .

This change was necessary to allow for the more natural MHE formulation where the process noise is penalised in the cost function. The user can define for each state (vector) individually if this is intended or not.

As a consequence of this change I had to introduce the new variable w throughout do-mpc. For the MPC and simulator module this is without effect.

The main difference is here [https://github.com/do-mpc/do-mpc/blob/3f11da50cb8ab15798411be1c6400753c83d53e4/do_mpc/estimator.py#L573]

Remark: The change also allows to estimate parameters that change over time (e.g. environmental influences). Our regular estimated parameters are constant over the entire MHE horizon, which is not always valid. To estimate varying parameters, they should be defined as states with unknown dynamics. Concretely, their RHS is zero (for ODEs) and they have a high process noise.

Symbolic variables for MHE weighting matrices

As originally intended, it is now possible to have symbolic matrices as MHE tuning factors. The result of this change can be seen in the rotating_oscillating_masses example.

The symbolic variables are defined in the do-mpc Model where typically, you want to have P_x and P_p as parameters and P_y and P_w as time-varying parameters. Example of their definition [https://github.com/do-mpc/do-mpc/blob/3f11da50cb8ab15798411be1c6400753c83d53e4/examples/rotating_oscillating_masses_mhe_mpc/template_model.py#L65].

and here [https://github.com/do-mpc/do-mpc/blob/3f11da50cb8ab15798411be1c6400753c83d53e4/examples/rotating_oscillating_masses_mhe_mpc/template_mhe.py#L51] they are used.

The purpose of using symbolic weighting is of course to update them at each iteration. Since they are parameters and time-varying parameters respectively, this is done with the set_p_fun and set_tvp_fun method of the MHE: link [https://github.com/do-mpc/do-mpc/blob/3f11da50cb8ab15798411be1c6400753c83d53e4/examples/rotating_oscillating_masses_mhe_mpc/template_mhe.py#L79]

Note that in the example above, we don’t actually need varying weighting matrices and the returned values are in fact constant. This can be seen as a proof of concept.

This change had some other implications. Most notably, having additional parameters interferes with the multi-stage robust MPC module. Where we previously had to pass
a number of scenarios for each defined parameter.
Since parameters for the MHE are irrelevant for MPC the API for the call set_uncertainty_values has changed: link [https://github.com/do-mpc/do-mpc/blob/3f11da50cb8ab15798411be1c6400753c83d53e4/do_mpc/controller.py#L477]

The new API is fully backwards compatible.
However, it is much more intuitive now. The function is called with keyword arguments, where each keyword refers to one uncertain parameter (note that we can ignore the parameters that are irrelevant).
In practice this looks something like this [https://github.com/do-mpc/do-mpc/blob/3f11da50cb8ab15798411be1c6400753c83d53e4/examples/rotating_oscillating_masses_mhe_mpc/template_mpc.py#L89]

Example files

Please download the example files for release do-mpc v4.0.0-beta3 here [https://github.com/do-mpc/do-mpc/releases/download/v4.0.0-beta3/examples.zip].

do-mpc v4.0.0-beta2

Error in release. Immediately replaced with beta3.

do-mpc v4.0.0-beta1

Major changes

	We are now explicitly pointing out attributes of the Model such as states, inputs, etc. These should be used to obtain these attributes and replace the previous get_variables method which is now depreciated. The Model also supports a __get_variable__ call now to conveniently select items.

	setup_model is replaced by setup to be more consistent with other setup methods. The old method is still available and shows a depreciation warning.

	The MHE now supports the set_default_objective method.

Bug fixes

	The MHE formulation had an error in the make_step method. We used the wrong time step from the previous solution to compute the arrival cost.

Other changes

	Spelling in documentation

	New guide about installing HSL linear solver

	Credits in documentation

Example files

Please download the example files for release do-mpc v4.0.0-beta1 here [https://github.com/do-mpc/do-mpc/releases/download/v4.0.0-beta1/examples.zip].

do-mpc v4.0.0-beta

do-mpc has undergone a massive overhaul and comes with a completely new interface,
new features and a comprehensive documentation.

Please note that previously written code is not compatible with do-mpc 4.0.0.
If you want to continue working with older code please use version 3.0.0.

This is the beta release of version 4.0.0. We expect minor modifications and bug fixes in the near future.

Please see our documentation on our new project homepage www.do-mpc.com for a full list of features.

Example files

Please download the example files for release do-mpc v4.0.0-beta here [https://github.com/do-mpc/do-mpc/releases/download/v4.0.0-beta/examples.zip].

do-mpc v3.0.0

Main modifications

	Support for CasADi version 3.4.4

	Support for time-varying parameters

	Support for discrete-time systems

do-mpc v2.0.0

Compatible with CasADi 3.0.0

do-mpc version 1.0.0

 Batch Bioreactor

Batch Bioreactor

In this Jupyter Notebook we illustrate the example batch_reactor.

Open an interactive online Jupyter Notebook with this content on Binder:

[image: Binder] [https://mybinder.org/v2/gh/do-mpc/do-mpc.git/master?filepath=%2Fdocumentation%2Fsource%2Fexample_gallery%2FCSTR.ipynb]

The example consists of the three modules template_model.py, which describes the system model, template_mpc.py, which defines the settings for the control and template_simulator.py, which sets the parameters for the simulator. The modules are used in main.py for the closed-loop execution of the controller.

In the following the different parts are presented. But first, we start by importing basic modules and do-mpc.

[1]:

import numpy as np
import sys
from casadi import *

Add do_mpc to path. This is not necessary if it was installed via pip
sys.path.append('../../../')

Import do_mpc package:
import do_mpc

Model

In the following we will present the configuration, setup and connection between these blocks, starting with the model.

The considered model of the batch bioreactor is continuous and has 4 states and 1 control input, which are depicted below:

[image: batchreactor]

The model is initiated by:

[2]:

model_type = 'continuous' # either 'discrete' or 'continuous'
model = do_mpc.model.Model(model_type)

States and control inputs

The four states are concentration of the biomass \(X_{\text{s}}\), the concentration of the substrate \(S_{\text{s}}\), the concentration of the product \(P_{\text{s}}\) and the volume \(V_{\text{s}}\):

[3]:

States struct (optimization variables):
X_s = model.set_variable('_x', 'X_s')
S_s = model.set_variable('_x', 'S_s')
P_s = model.set_variable('_x', 'P_s')
V_s = model.set_variable('_x', 'V_s')

The control input is the feed flow rate \(u_{\text{inp}}\) of \(S_{\text{s}}\):

[4]:

Input struct (optimization variables):
inp = model.set_variable('_u', 'inp')

ODE and parameters

The system model is described by the ordinary differential equation:

\begin{align}
\dot{X}_{\text{s}} &=\mu(S_{\text{s}})X_{\text{s}}-\frac{u_{\text{inp}}}{V_{\text{s}}}X_{\text{s}},\\
\dot{S}_{\text{s}} &=-\frac{\mu(S_{\text{s}})X_{\text{s}}}{Y_{\text{x}}}-\frac{vX_{\text{s}}}{Y_{\text{p}}}+\frac{u_{\text{inp}}}{V_{\text{s}}}(S_{\text{in}}-S_{\text{s}}),\\
\dot{P}_{\text{s}} &=vX_{\text{s}}-\frac{u_{\text{inp}}}{V_{\text{s}}}P_{\text{s}},\\
\dot{V}_{\text{s}} &=u_{\text{inp}},\\
\end{align}
where:

\begin{align}
\mu(S_{\text{s}})&=\frac{\mu_{\text{m}} S_{\text{s}}}{K_{\text{m}}+S_{\text{s}}+(S_{\text{s}}^2/K_{\text{i}})},
\end{align}
\(S_{\text{in}}\) is the inlet substrate concentration, \(\mu_{\text{m}}\), \(K_{\text{m}}\), \(K_{\text{i}}\) and \(v\) are kinetic parameters \(Y_{\text{x}}\) and \(Y_{\text{p}}\) are yield coefficients. The inlet substrate concentration \(S_{\text{in}}\) and the \(Y_{\text{x}}\) are uncertain while the rest of the parameters is considered certain:

[5]:

Certain parameters
mu_m = 0.02
K_m = 0.05
K_i = 5.0
v_par = 0.004
Y_p = 1.2

Uncertain parameters:
Y_x = model.set_variable('_p', 'Y_x')
S_in = model.set_variable('_p', 'S_in')

In the next step, the ODE for each state is set:

[6]:

Auxiliary term
mu_S = mu_m*S_s/(K_m+S_s+(S_s**2/K_i))

Differential equations
model.set_rhs('X_s', mu_S*X_s - inp/V_s*X_s)
model.set_rhs('S_s', -mu_S*X_s/Y_x - v_par*X_s/Y_p + inp/V_s*(S_in-S_s))
model.set_rhs('P_s', v_par*X_s - inp/V_s*P_s)
model.set_rhs('V_s', inp)

Finally, the model setup is completed:

[7]:

Build the model
model.setup()

Controller

Next, the controller is configured. First, one member of the mpc class is generated with the prediction model defined above:

[8]:

mpc = do_mpc.controller.MPC(model)

We choose the prediction horizon n_horizon, set the robust horizon n_robust to 3. The time step t_step is set to one second and parameters of the applied discretization scheme orthogonal collocation are as seen below:

[9]:

setup_mpc = {
 'n_horizon': 20,
 'n_robust': 1,
 'open_loop': 0,
 't_step': 1.0,
 'state_discretization': 'collocation',
 'collocation_type': 'radau',
 'collocation_deg': 2,
 'collocation_ni': 2,
 'store_full_solution': True,
 # Use MA27 linear solver in ipopt for faster calculations:
 #'nlpsol_opts': {'ipopt.linear_solver': 'MA27'}
}

mpc.set_param(**setup_mpc)

Objective

The batch bioreactor is used to produce penicillin. Hence, the objective of the controller is to maximize the concentration of the product \(P_{\text{s}}\). Additionally, we add a penalty on input changes, to obtain a smooth control performance.

[10]:

mterm = -model.x['P_s'] # terminal cost
lterm = -model.x['P_s'] # stage cost

mpc.set_objective(mterm=mterm, lterm=lterm)
mpc.set_rterm(inp=1.0) # penalty on input changes

Constraints

In the next step, the constraints of the control problem are set. In this case, there are only upper and lower bounds for each state and the input:

[11]:

lower bounds of the states
mpc.bounds['lower', '_x', 'X_s'] = 0.0
mpc.bounds['lower', '_x', 'S_s'] = -0.01
mpc.bounds['lower', '_x', 'P_s'] = 0.0
mpc.bounds['lower', '_x', 'V_s'] = 0.0

upper bounds of the states
mpc.bounds['upper', '_x','X_s'] = 3.7
mpc.bounds['upper', '_x','P_s'] = 3.0

upper and lower bounds of the control input
mpc.bounds['lower','_u','inp'] = 0.0
mpc.bounds['upper','_u','inp'] = 0.2

Uncertain values

The explicit values of the two uncertain parameters \(Y_{\text{x}}\) and \(S_{\text{in}}\), which are considered in the scenario tree, are given by:

[12]:

Y_x_values = np.array([0.5, 0.4, 0.3])
S_in_values = np.array([200.0, 220.0, 180.0])

mpc.set_uncertainty_values(Y_x = Y_x_values, S_in = S_in_values)

This means with n_robust=1, that 9 different scenarios are considered. The setup of the MPC controller is concluded by:

[13]:

mpc.setup()

Estimator

We assume, that all states can be directly measured (state-feedback):

[14]:

estimator = do_mpc.estimator.StateFeedback(model)

Simulator

To create a simulator in order to run the MPC in a closed-loop, we create an instance of the do-mpc simulator which is based on the same model:

[15]:

simulator = do_mpc.simulator.Simulator(model)

For the simulation, we use the time step t_step as for the optimizer:

[16]:

params_simulator = {
 'integration_tool': 'cvodes',
 'abstol': 1e-10,
 'reltol': 1e-10,
 't_step': 1.0
}

simulator.set_param(**params_simulator)

Realizations of uncertain parameters

For the simulatiom, it is necessary to define the numerical realizations of the uncertain parameters in p_num. First, we get the structure of the uncertain parameters:

[17]:

p_num = simulator.get_p_template()

We define a function which is called in each simulation step, which gives the current realization of the uncertain parameters, with respect to defined inputs (in this case t_now):

[18]:

p_num['Y_x'] = 0.4
p_num['S_in'] = 200.0

function definition
def p_fun(t_now):
 return p_num

Set the user-defined function above as the function for the realization of the uncertain parameters
simulator.set_p_fun(p_fun)

By defining p_fun as above, the function will always return the same values. To finish the configuration of the simulator, call:

[19]:

simulator.setup()

Closed-loop simulation

For the simulation of the MPC configured for the batch bioreactor, we inspect the file main.py. We define the initial state of the system and set for all parts of the closed-loop configuration:

[20]:

Initial state
X_s_0 = 1.0 # Concentration biomass [mol/l]
S_s_0 = 0.5 # Concentration substrate [mol/l]
P_s_0 = 0.0 # Concentration product [mol/l]
V_s_0 = 120.0 # Volume inside tank [m^3]
x0 = np.array([X_s_0, S_s_0, P_s_0, V_s_0])

Set for controller, simulator and estimator
mpc.x0 = x0
simulator.x0 = x0
estimator.x0 = x0
mpc.set_initial_guess()

Prepare visualization

For the visualization of the control performance, we first import matplotlib and change some basic settings:

[21]:

import matplotlib.pyplot as plt
plt.ion()
from matplotlib import rcParams
rcParams['text.usetex'] = True
rcParams['text.latex.preamble'] = [r'\usepackage{amsmath}',r'\usepackage{siunitx}']
rcParams['axes.grid'] = True
rcParams['lines.linewidth'] = 2.0
rcParams['axes.labelsize'] = 'xx-large'
rcParams['xtick.labelsize'] = 'xx-large'
rcParams['ytick.labelsize'] = 'xx-large'

We use the plotting capabilities, which are included in do-mpc. The mpc_graphics contain information like the current estimated state and the predicted trajectory of the states and inputs based on the solution of the control problem. The sim_graphics contain the information about the simulated evaluation of the system.

[22]:

mpc_graphics = do_mpc.graphics.Graphics(mpc.data)
sim_graphics = do_mpc.graphics.Graphics(simulator.data)

A figure containing the 4 states and the control input are created:

[23]:

%%capture
fig, ax = plt.subplots(5, sharex=True, figsize=(16,9))
fig.align_ylabels()

for g in [sim_graphics,mpc_graphics]:
 # Plot the state on axis 1 to 4:
 g.add_line(var_type='_x', var_name='X_s', axis=ax[0], color='#1f77b4')
 g.add_line(var_type='_x', var_name='S_s', axis=ax[1], color='#1f77b4')
 g.add_line(var_type='_x', var_name='P_s', axis=ax[2], color='#1f77b4')
 g.add_line(var_type='_x', var_name='V_s', axis=ax[3], color='#1f77b4')

 # Plot the control input on axis 5:
 g.add_line(var_type='_u', var_name='inp', axis=ax[4], color='#1f77b4')

ax[0].set_ylabel(r'$X_s~[\si[per-mode=fraction]{\mole\per\litre}]$')
ax[1].set_ylabel(r'$S_s~[\si[per-mode=fraction]{\mole\per\litre}]$')
ax[2].set_ylabel(r'$P_s~[\si[per-mode=fraction]{\mole\per\litre}]$')
ax[3].set_ylabel(r'$V_s~[\si[per-mode=fraction]{\mole\per\litre}]$')
ax[4].set_ylabel(r'$u_{\text{inp}}~[\si[per-mode=fraction]{\cubic\metre\per\minute}]$')
ax[4].set_xlabel(r'$t~[\si[per-mode=fraction]{\minute}]$')

Run closed-loop

The closed-loop system is now simulated for 50 steps (and the ouput of the optimizer is suppressed):

[24]:

%%capture
n_steps = 100
for k in range(n_steps):
 u0 = mpc.make_step(x0)
 y_next = simulator.make_step(u0)
 x0 = estimator.make_step(y_next)

Results

The next cell converts the results of the closed-loop MPC simulation into a gif (might take a few minutes):

[25]:

from matplotlib.animation import FuncAnimation, FFMpegWriter, ImageMagickWriter

The function describing the gif:
def update(t_ind):
 sim_graphics.plot_results(t_ind)
 mpc_graphics.plot_predictions(t_ind)
 mpc_graphics.reset_axes()

if False:
 anim = FuncAnimation(fig, update, frames=n_steps, repeat=False)
 gif_writer = ImageMagickWriter(fps=10)
 anim.save('anim_batch_reactor_final.gif', writer=gif_writer)

The result is shown below, where solid lines are the recorded trajectories and dashed lines are the predictions of the scenarios:

[image: animbreactor]

 Continuous stirred tank reactor (CSTR)

Continuous stirred tank reactor (CSTR)

In this Jupyter Notebook we illustrate the example CSTR.

Open an interactive online Jupyter Notebook with this content on Binder:

[image: Binder] [https://mybinder.org/v2/gh/do-mpc/do-mpc.git/master?filepath=%2Fdocumentation%2Fsource%2Fexample_gallery%2FCSTR.ipynb]

The example consists of the three modules template_model.py, which describes the system model, template_mpc.py, which defines the settings for the control and template_simulator.py, which sets the parameters for the simulator. The modules are used in main.py for the closed-loop execution of the controller. The file post_processing.py is used for the visualization of the closed-loop control run. One exemplary result will be presented at the end of this tutorial as a gif.

In the following the different parts are presented. But first, we start by importing basic modules and do-mpc.

[1]:

import numpy as np
import sys
from casadi import *

Add do_mpc to path. This is not necessary if it was installed via pip
sys.path.append('../../../')

Import do_mpc package:
import do_mpc

import matplotlib.pyplot as plt

Model

In the following we will present the configuration, setup and connection between these blocks, starting with the model. The considered model of the CSTR is continuous and has 4 states and 2 control inputs. The model is initiated by:

[2]:

model_type = 'continuous' # either 'discrete' or 'continuous'
model = do_mpc.model.Model(model_type)

States and control inputs

The four states are concentration of reactant A (\(C_{\text{A}}\)), the concentration of reactant B (\(C_{\text{B}}\)), the temperature inside the reactor (\(T_{\text{R}}\)) and the temperature of the cooling jacket (\(T_{\text{K}}\)):

[3]:

States struct (optimization variables):
C_a = model.set_variable(var_type='_x', var_name='C_a', shape=(1,1))
C_b = model.set_variable(var_type='_x', var_name='C_b', shape=(1,1))
T_R = model.set_variable(var_type='_x', var_name='T_R', shape=(1,1))
T_K = model.set_variable(var_type='_x', var_name='T_K', shape=(1,1))

The control inputs are the feed \(F\) and the heat flow \(\dot{Q}\):

[4]:

Input struct (optimization variables):
F = model.set_variable(var_type='_u', var_name='F')
Q_dot = model.set_variable(var_type='_u', var_name='Q_dot')

ODE and parameters

The system model is described by the ordinary differential equation:

\begin{align}
\dot{C}_{\text{A}} &= F \cdot (C_{\text{A},0} - C_{\text{A}}) - k_1 \cdot C_{\text{A}} - k_3 \cdot C_{\text{A}}^2, \\
\dot{C}_{\text{B}} &= F \cdot C_{\text{B}} + k_1 \cdot C_{\text{A}} - k_2 \cdot C_{\text{B}}, \\
\dot{T}_{\text{R}} &= \frac{k_1 \cdot C_{\text{A}} \cdot H_{\text{R},ab} + k_2 \cdot C_{\text{B}} \cdot H_{\text{R},bc} + k_3 \cdot C_{\text{A}}^2 \cdot H_{\text{R},ad}} {-\rho \cdot c_p}\\
&+ F \cdot (T_{\text{in}} - T_{\text{R}}) + \frac{K_w \cdot A_{\text{R}} \cdot(T_{\text{K}}-T_{\text{R}})}{\rho \cdot c_p \cdot V_{\text{R}}}, \\
\dot{T}_{\text{K}} &= \frac{\dot{Q} + k_w \cdot A_{\text{R}} \cdot T_{\text{dif}}}{m_k \cdot C_{p,k}},
\end{align}
where

\begin{align}
k_1 &= \beta \cdot k_{0,\text{ab}} \cdot \exp\left(\frac{-E_{\text{A},\text{ab}}}{T_{\text{R}}+273.15}\right), \\
k_1 &= k_{0,\text{bc}} \cdot \exp \left(\frac{-E_{\text{A},\text{bc}}}{T_{\text{R}}+273.15} \right), \\
k_3 &= k_{0,\text{ad}} \cdot \exp \left(\frac{-\alpha \cdot E_{\text{A},\text{ad}}}{T_{\text{R}}+273.15} \right).
\end{align}
The parameters \(\alpha\) and \(\beta\) are uncertain while the rest of the parameters is considered certain:

[5]:

Certain parameters
K0_ab = 1.287e12 # K0 [h^-1]
K0_bc = 1.287e12 # K0 [h^-1]
K0_ad = 9.043e9 # K0 [l/mol.h]
R_gas = 8.3144621e-3 # Universal gas constant
E_A_ab = 9758.3*1.00 #* R_gas# [kj/mol]
E_A_bc = 9758.3*1.00 #* R_gas# [kj/mol]
E_A_ad = 8560.0*1.0 #* R_gas# [kj/mol]
H_R_ab = 4.2 # [kj/mol A]
H_R_bc = -11.0 # [kj/mol B] Exothermic
H_R_ad = -41.85 # [kj/mol A] Exothermic
Rou = 0.9342 # Density [kg/l]
Cp = 3.01 # Specific Heat capacity [kj/Kg.K]
Cp_k = 2.0 # Coolant heat capacity [kj/kg.k]
A_R = 0.215 # Area of reactor wall [m^2]
V_R = 10.01 #0.01 # Volume of reactor [l]
m_k = 5.0 # Coolant mass[kg]
T_in = 130.0 # Temp of inflow [Celsius]
K_w = 4032.0 # [kj/h.m^2.K]
C_A0 = (5.7+4.5)/2.0*1.0 # Concentration of A in input Upper bound 5.7 lower bound 4.5 [mol/l]

Uncertain parameters:
alpha = model.set_variable(var_type='_p', var_name='alpha')
beta = model.set_variable(var_type='_p', var_name='beta')

In the next step, we formulate the \(k_i\)-s:

[6]:

Auxiliary terms
K_1 = beta * K0_ab * exp((-E_A_ab)/((T_R+273.15)))
K_2 = K0_bc * exp((-E_A_bc)/((T_R+273.15)))
K_3 = K0_ad * exp((-alpha*E_A_ad)/((T_R+273.15)))

Additionally, we define an artificial variable of interest, that is not a state of the system, but will be later used for plotting:

[7]:

T_dif = model.set_expression(expr_name='T_dif', expr=T_R-T_K)

WIth the help ot the \(k_i\)-s and \(T_{\text{dif}}\) we can define the ODEs:

[8]:

model.set_rhs('C_a', F*(C_A0 - C_a) -K_1*C_a - K_3*(C_a**2))
model.set_rhs('C_b', -F*C_b + K_1*C_a - K_2*C_b)
model.set_rhs('T_R', ((K_1*C_a*H_R_ab + K_2*C_b*H_R_bc + K_3*(C_a**2)*H_R_ad)/(-Rou*Cp)) + F*(T_in-T_R) +(((K_w*A_R)*(-T_dif))/(Rou*Cp*V_R)))
model.set_rhs('T_K', (Q_dot + K_w*A_R*(T_dif))/(m_k*Cp_k))

Finally, the model setup is completed:

[9]:

Build the model
model.setup()

Controller

Next, the model predictive controller is configured. First, one member of the mpc class is generated with the prediction model defined above:

[10]:

mpc = do_mpc.controller.MPC(model)

We choose the prediction horizon n_horizon, set the robust horizon n_robust to 1. The time step t_step is set to one second and parameters of the applied discretization scheme orthogonal collocation are as seen below:

[11]:

setup_mpc = {
 'n_horizon': 20,
 'n_robust': 1,
 'open_loop': 0,
 't_step': 0.005,
 'state_discretization': 'collocation',
 'collocation_type': 'radau',
 'collocation_deg': 2,
 'collocation_ni': 2,
 'store_full_solution': True,
 # Use MA27 linear solver in ipopt for faster calculations:
 #'nlpsol_opts': {'ipopt.linear_solver': 'MA27'}
}

mpc.set_param(**setup_mpc)

Because the magnitude of the states and inputs is very different, we introduce scaling factors:

[12]:

mpc.scaling['_x', 'T_R'] = 100
mpc.scaling['_x', 'T_K'] = 100
mpc.scaling['_u', 'Q_dot'] = 2000
mpc.scaling['_u', 'F'] = 100

Objective

The goal of the CSTR is to obtain a mixture with a concentration of \(C_{\text{B,ref}} = 0.6\) mol/l. Additionally, we add a penalty on input changes for both control inputs, to obtain a smooth control performance.

[13]:

_x = model.x
mterm = (_x['C_b'] - 0.6)**2 # terminal cost
lterm = (_x['C_b'] - 0.6)**2 # stage cost

mpc.set_objective(mterm=mterm, lterm=lterm)

mpc.set_rterm(F=0.1, Q_dot = 1e-3) # input penalty

Constraints

In the next step, the constraints of the control problem are set. In this case, there are only upper and lower bounds for each state and the input:

[14]:

lower bounds of the states
mpc.bounds['lower', '_x', 'C_a'] = 0.1
mpc.bounds['lower', '_x', 'C_b'] = 0.1
mpc.bounds['lower', '_x', 'T_R'] = 50
mpc.bounds['lower', '_x', 'T_K'] = 50

upper bounds of the states
mpc.bounds['upper', '_x', 'C_a'] = 2
mpc.bounds['upper', '_x', 'C_b'] = 2
mpc.bounds['upper', '_x', 'T_K'] = 140

lower bounds of the inputs
mpc.bounds['lower', '_u', 'F'] = 5
mpc.bounds['lower', '_u', 'Q_dot'] = -8500

upper bounds of the inputs
mpc.bounds['upper', '_u', 'F'] = 100
mpc.bounds['upper', '_u', 'Q_dot'] = 0.0

If a constraint is not critical, it is possible to implement it as a soft constraint. This means, that a small violation of the constraint does not render the optimization infeasible. Instead, a penalty term is added to the objective. Soft constraints can always be applied, if small violations can be accepted and it might even be necessary to apply MPC in a safe way (by avoiding avoiding numerical instabilities). In this case, we define the upper bounds of the reactor temperature as a
soft constraint by using mpc.set_nl_cons().

[15]:

mpc.set_nl_cons('T_R', _x['T_R'], ub=140, soft_constraint=True, penalty_term_cons=1e2)

[15]:

SX((T_R-eps_T_R))

Uncertain values

The explicit values of the two uncertain parameters \(\alpha\) and \(\beta\), which are considered in the scenario tree, are given by:

[16]:

alpha_var = np.array([1., 1.05, 0.95])
beta_var = np.array([1., 1.1, 0.9])

mpc.set_uncertainty_values(alpha = alpha_var, beta = beta_var)

This means with n_robust=1, that 9 different scenarios are considered. The setup of the MPC controller is concluded by:

[17]:

mpc.setup()

Estimator

We assume, that all states can be directly measured (state-feedback):

[18]:

estimator = do_mpc.estimator.StateFeedback(model)

Simulator

To create a simulator in order to run the MPC in a closed-loop, we create an instance of the do-mpc simulator which is based on the same model:

[19]:

simulator = do_mpc.simulator.Simulator(model)

For the simulation, we use the same time step t_step as for the optimizer:

[20]:

params_simulator = {
 'integration_tool': 'cvodes',
 'abstol': 1e-10,
 'reltol': 1e-10,
 't_step': 0.005
}

simulator.set_param(**params_simulator)

Realizations of uncertain parameters

For the simulatiom, it is necessary to define the numerical realizations of the uncertain parameters in p_num and the time-varying parameters in tvp_num. First, we get the structure of the uncertain and time-varying parameters:

[21]:

p_num = simulator.get_p_template()
tvp_num = simulator.get_tvp_template()

We define two functions which are called in each simulation step, which return the current realizations of the parameters, with respect to defined inputs (in this case t_now):

[22]:

function for time-varying parameters
def tvp_fun(t_now):
 return tvp_num

uncertain parameters
p_num['alpha'] = 1
p_num['beta'] = 1
def p_fun(t_now):
 return p_num

These two custum functions are used in the simulation via:

[23]:

simulator.set_tvp_fun(tvp_fun)
simulator.set_p_fun(p_fun)

By defining p_fun as above, the function will always return the value 1.0 for both \(\alpha\) and \(\beta\). To finish the configuration of the simulator, call:

[24]:

simulator.setup()

Closed-loop simulation

For the simulation of the MPC configured for the CSTR, we inspect the file main.py. We define the initial state of the system and set it for all parts of the closed-loop configuration:

[25]:

Set the initial state of mpc, simulator and estimator:
C_a_0 = 0.8 # This is the initial concentration inside the tank [mol/l]
C_b_0 = 0.5 # This is the controlled variable [mol/l]
T_R_0 = 134.14 #[C]
T_K_0 = 130.0 #[C]
x0 = np.array([C_a_0, C_b_0, T_R_0, T_K_0]).reshape(-1,1)

mpc.x0 = x0
simulator.x0 = x0
estimator.x0 = x0

mpc.set_initial_guess()

Now, we simulate the closed-loop for 50 steps (and suppress the output of the cell with the magic command %%capture):

[26]:

%%capture
for k in range(50):
 u0 = mpc.make_step(x0)
 y_next = simulator.make_step(u0)
 x0 = estimator.make_step(y_next)

Animating the results

To animate the results, we first configure the do-mpc graphics object, which is initiated with the respective data object:

[27]:

mpc_graphics = do_mpc.graphics.Graphics(mpc.data)

We quickly configure Matplotlib.

[28]:

from matplotlib import rcParams
rcParams['axes.grid'] = True
rcParams['font.size'] = 18

We then create a figure, configure which lines to plot on which axis and add labels.

[29]:

%%capture
fig, ax = plt.subplots(5, sharex=True, figsize=(16,12))
Configure plot:
mpc_graphics.add_line(var_type='_x', var_name='C_a', axis=ax[0])
mpc_graphics.add_line(var_type='_x', var_name='C_b', axis=ax[0])
mpc_graphics.add_line(var_type='_x', var_name='T_R', axis=ax[1])
mpc_graphics.add_line(var_type='_x', var_name='T_K', axis=ax[1])
mpc_graphics.add_line(var_type='_aux', var_name='T_dif', axis=ax[2])
mpc_graphics.add_line(var_type='_u', var_name='Q_dot', axis=ax[3])
mpc_graphics.add_line(var_type='_u', var_name='F', axis=ax[4])
ax[0].set_ylabel('c [mol/l]')
ax[1].set_ylabel('T [K]')
ax[2].set_ylabel('Δ T [K]')
ax[3].set_ylabel('Q [kW]')
ax[4].set_ylabel('Flow [l/h]')
ax[4].set_xlabel('time [h]')

Some “cosmetic” modifications are easily achieved with the structure pred_lines and result_lines.

[30]:

Update properties for all prediction lines:
for line_i in mpc_graphics.pred_lines.full:
 line_i.set_linewidth(2)
Highlight nominal case:
for line_i in np.sum(mpc_graphics.pred_lines['_x', :, :,0]):
 line_i.set_linewidth(5)
for line_i in np.sum(mpc_graphics.pred_lines['_u', :, :,0]):
 line_i.set_linewidth(5)
for line_i in np.sum(mpc_graphics.pred_lines['_aux', :, :,0]):
 line_i.set_linewidth(5)

Add labels
label_lines = mpc_graphics.result_lines['_x', 'C_a']+mpc_graphics.result_lines['_x', 'C_b']
ax[0].legend(label_lines, ['C_a', 'C_b'])
label_lines = mpc_graphics.result_lines['_x', 'T_R']+mpc_graphics.result_lines['_x', 'T_K']
ax[1].legend(label_lines, ['T_R', 'T_K'])

fig.align_ylabels()

After importing the necessary package:

[31]:

from matplotlib.animation import FuncAnimation, ImageMagickWriter

We obtain the animation with:

[32]:

def update(t_ind):
 print('Writing frame: {}.'.format(t_ind), end='\r')
 mpc_graphics.plot_results(t_ind=t_ind)
 mpc_graphics.plot_predictions(t_ind=t_ind)
 mpc_graphics.reset_axes()
 lines = mpc_graphics.result_lines.full
 return lines

n_steps = mpc.data['_time'].shape[0]

anim = FuncAnimation(fig, update, frames=n_steps, blit=True)

gif_writer = ImageMagickWriter(fps=5)
anim.save('anim_CSTR.gif', writer=gif_writer)

Writing frame: 49.

[image: cstranim]

Recorded trajectories are shown as solid lines, whereas predictions are dashed. We highlight the nominal prediction with a thicker line.

 Industrial polymerization reactor

Industrial polymerization reactor

In this Jupyter Notebook we illustrate the example industrial_poly.

Open an interactive online Jupyter Notebook with this content on Binder:

[image: Binder] [https://mybinder.org/v2/gh/do-mpc/do-mpc.git/master?filepath=%2Fdocumentation%2Fsource%2Fexample_gallery%2Findustrial_poly.ipynb]

The example consists of the three modules template_model.py, which describes the system model, template_mpc.py, which defines the settings for the control and template_simulator.py, which sets the parameters for the simulator. The modules are used in main.py for the closed-loop execution of the controller.

In the following the different parts are presented. But first, we start by importing basic modules and do-mpc.

[29]:

import numpy as np
import matplotlib.pyplot as plt
import sys
from casadi import *

Add do_mpc to path. This is not necessary if it was installed via pip
sys.path.append('../../../')

Import do_mpc package:
import do_mpc

Model

In the following we will present the configuration, setup and connection between these blocks, starting with the model. The considered model of the industrial reactor is continuous and has 10 states and 3 control inputs. The model is initiated by:

[2]:

model_type = 'continuous' # either 'discrete' or 'continuous'
model = do_mpc.model.Model(model_type)

System description

The system consists of a reactor into which nonomer is fed. The monomerturns into a polymer via a very exothermic chemical reaction. The reactor is equipped with a jacket and with an External Heat Exchanger(EHE) that can both be used to control the temperature inside the reactor. A schematic representation of the system is presented below:

[image: polysketch]

The process is modeled by a set of 8 ordinary differential equations (ODEs):

\begin{align}
\dot{m}_{\text{W}} &= \ \dot{m}_{\text{F}}\, \omega_{\text{W,F}} \\
\dot{m}_{\text{A}} &= \ \dot{m}_{\text{F}} \omega_{\text{A,F}}-k_{\text{R1}}\, m_{\text{A,R}}-k_{\text{R2}}\, m_{\text{AWT}}\, m_{\text{A}}/m_{\text{ges}} , \\
\dot{m}_{\text{P}} &= \ k_{\text{R1}} \, m_{\text{A,R}}+p_{1}\, k_{\text{R2}}\, m_{\text{AWT}}\, m_{\text{A}}/ m_{\text{ges}}, \\
\dot{T}_{\text{R}} &= \ 1/(c_{\text{p,R}} m_{\text{ges}})\; [\dot{m}_{\text{F}} \; c_{\text{p,F}}\left(T_{\text{F}}-T_{\text{R}}\right) +\Delta H_{\text{R}} k_{\text{R1}} m_{\text{A,R}}-k_{\text{K}} A\left(T_{\text{R}}-T_{\text{S}}\right) \\
&- \dot{m}_{\text{AWT}} \,c_{\text{p,R}}\left(T_{\text{R}}-T_{\text{EK}}\right)],\notag\\
\dot{T}_{S} &= 1/(c_{\text{p,S}} m_{\text{S}}) \;[k_{\text{K}} A\left(T_{\text{R}}-T_{\text{S}}\right)-k_{\text{K}} A\left(T_{\text{S}}-T_{\text{M}}\right)], \notag\\
\dot{T}_{\text{M}} &= 1/(c_{\text{p,W}} m_{\text{M,KW}})\;[\dot{m}_{\text{M,KW}}\, c_{\text{p,W}}\left(T_{\text{M}}^{\text{IN}}-T_{\text{M}}\right) \\
&+ k_{\text{K}} A\left(T_{\text{S}}-T_{\text{M}}\right)]+k_{\text{K}} A\left(T_{\text{S}}-T_{\text{M}}\right)], \\
\dot{T}_{\text{EK}}&= 1/(c_{\text{p,R}} m_{\text{AWT}})\;[\dot{m}_{\text{AWT}} c_{\text{p,W}}\left(T_{\text{R}}-T_{\text{EK}}\right)-\alpha\left(T_{\text{EK}}-T_{\text{AWT}}\right) \\
&+ k_{\text{R2}}\, m_{\text{A}}\, m_{\text{AWT}}\Delta H_{\text{R}}/m_{\text{ges}}], \notag\\
\dot{T}_{\text{AWT}} &= [\dot{m}_{\text{AWT,KW}} \,c_{\text{p,W}}\,(T_{\text{AWT}}^{\text{IN}}-T_{\text{AWT}})-\alpha\left(T_{\text{AWT}}-T_{\text{EK}}\right)]/(c_{\text{p,W}} m_{\text{AWT,KW}}),
\end{align}
where

\begin{align}
U &= m_{\text{P}}/(m_{\text{A}}+m_{\text{P}}), \\
m_{\text{ges}} &= \ m_{\text{W}}+m_{\text{A}}+m_{\text{P}}, \\
k_{\text{R1}} &= \ k_{0} e^{\frac{-E_{a}}{R (T_{\text{R}}+273.15)}}\left(k_{\text{U1}}\left(1-U\right)+k_{\text{U2}} U\right), \\
k_{\text{R2}} &= \ k_{0} e^{\frac{-E_{a}}{R (T_{\text{EK}}+273.15)}}\left(k_{\text{U1}}\left(1-U\right)+k_{\text{U2}} U\right), \\
k_{\text{K}} &= (m_{\text{W}}k_{\text{WS}}+m_{\text{A}}k_{\text{AS}}+m_{\text{P}}k_{\text{PS}})/m_{\text{ges}},\\
m_{\text{A,R}} &= m_\text{A}-m_\text{A} m_{\text{AWT}}/m_{\text{ges}}.
\end{align}
The model includes mass balances for the water, monomer and product hold-ups (\(m_\text{W}\), \(m_\text{A}\), \(m_\text{P}\)) and energy balances for the reactor (\(T_\text{R}\)), the vessel (\(T_\text{S}\)), the jacket (\(T_\text{M}\)), the mixture in the external heat exchanger (\(T_{\text{EK}}\)) and the coolant leaving the external heat exchanger (\(T_{\text{AWT}}\)). The variable \(U\) denotes the polymer-monomer ratio in the reactor,
\(m_{\text{ges}}\) represents the total mass, \(k_{\text{R1}}\) is the reaction rate inside the reactor and \(k_{\text{R2}}\) is the reaction rate in the external heat exchanger. The total heat transfer coefficient of the mixture inside the reactor is denoted as \(k_{\text{K}}\) and \(m_{\text{A,R}}\) represents the current amount of monomer inside the reactor.

The available control inputs are the feed flow \(\dot{m}_{\text{F}}\), the coolant temperature at the inlet of the jacket \(T^{\text{IN}}_{\text{M}}\) and the coolant temperature at the inlet of the external heat exchanger \(T^{\text{IN}}_{\text{AWT}}\).

An overview of the parameters are listed below:

[image: polyparameters]

Implementation

First, we set the certain parameters:

[3]:

Certain parameters
R = 8.314 #gas constant
T_F = 25 + 273.15 #feed temperature
E_a = 8500.0 #activation energy
delH_R = 950.0*1.00 #sp reaction enthalpy
A_tank = 65.0 #area heat exchanger surface jacket 65

k_0 = 7.0*1.00 #sp reaction rate
k_U2 = 32.0 #reaction parameter 1
k_U1 = 4.0 #reaction parameter 2
w_WF = .333 #mass fraction water in feed
w_AF = .667 #mass fraction of A in feed

m_M_KW = 5000.0 #mass of coolant in jacket
fm_M_KW = 300000.0 #coolant flow in jacket 300000;
m_AWT_KW = 1000.0 #mass of coolant in EHE
fm_AWT_KW = 100000.0 #coolant flow in EHE
m_AWT = 200.0 #mass of product in EHE
fm_AWT = 20000.0 #product flow in EHE
m_S = 39000.0 #mass of reactor steel

c_pW = 4.2 #sp heat cap coolant
c_pS = .47 #sp heat cap steel
c_pF = 3.0 #sp heat cap feed
c_pR = 5.0 #sp heat cap reactor contents

k_WS = 17280.0 #heat transfer coeff water-steel
k_AS = 3600.0 #heat transfer coeff monomer-steel
k_PS = 360.0 #heat transfer coeff product-steel

alfa = 5*20e4*3.6

p_1 = 1.0

and afterwards the uncertain parameters:

[4]:

Uncertain parameters:
delH_R = model.set_variable('_p', 'delH_R')
k_0 = model.set_variable('_p', 'k_0')

The 10 states of the control problem stem from the 8 ODEs, accum_monom models the amount that has been fed to the reactor via \(\dot{m}_\text{F}^{\text{acc}} = \dot{m}_{\text{F}}\) and T_adiab (\(T_{\text{adiab}}=\frac{\Delta H_{\text{R}}}{c_{\text{p,R}}} \frac{m_{\text{A}}}{m_{\text{ges}}} + T_{\text{R}}\), hence
\(\dot{T}_{\text{adiab}}=\frac{\Delta H_{\text{R}}}{m_{\text{ges}} c_{\text{p,R}}}\dot{m}_{\text{A}}- \left(\dot{m}_{\text{W}}+\dot{m}_{\text{A}}+\dot{m}_{\text{P}}\right)\left(\frac{m_{\text{A}} \Delta H_{\text{R}}}{m_{\text{ges}}^2c_{\text{p,R}}}\right)+\dot{T}_{\text{R}}\)) is a virtual variable that is important for safety aspects, as we will explain later. All states are created in do-mpc via:

[5]:

States struct (optimization variables):
m_W = model.set_variable('_x', 'm_W')
m_A = model.set_variable('_x', 'm_A')
m_P = model.set_variable('_x', 'm_P')
T_R = model.set_variable('_x', 'T_R')
T_S = model.set_variable('_x', 'T_S')
Tout_M = model.set_variable('_x', 'Tout_M')
T_EK = model.set_variable('_x', 'T_EK')
Tout_AWT = model.set_variable('_x', 'Tout_AWT')
accum_monom = model.set_variable('_x', 'accum_monom')
T_adiab = model.set_variable('_x', 'T_adiab')

and the control inputs via:

[6]:

Input struct (optimization variables):
m_dot_f = model.set_variable('_u', 'm_dot_f')
T_in_M = model.set_variable('_u', 'T_in_M')
T_in_EK = model.set_variable('_u', 'T_in_EK')

Before defining the ODE for each state variable, we create auxiliary terms:

[7]:

algebraic equations
U_m = m_P / (m_A + m_P)
m_ges = m_W + m_A + m_P
k_R1 = k_0 * exp(- E_a/(R*T_R)) * ((k_U1 * (1 - U_m)) + (k_U2 * U_m))
k_R2 = k_0 * exp(- E_a/(R*T_EK))* ((k_U1 * (1 - U_m)) + (k_U2 * U_m))
k_K = ((m_W / m_ges) * k_WS) + ((m_A/m_ges) * k_AS) + ((m_P/m_ges) * k_PS)

The auxiliary terms are used for the more readable definition of the ODEs:

[8]:

Differential equations
dot_m_W = m_dot_f * w_WF
model.set_rhs('m_W', dot_m_W)
dot_m_A = (m_dot_f * w_AF) - (k_R1 * (m_A-((m_A*m_AWT)/(m_W+m_A+m_P)))) - (p_1 * k_R2 * (m_A/m_ges) * m_AWT)
model.set_rhs('m_A', dot_m_A)
dot_m_P = (k_R1 * (m_A-((m_A*m_AWT)/(m_W+m_A+m_P)))) + (p_1 * k_R2 * (m_A/m_ges) * m_AWT)
model.set_rhs('m_P', dot_m_P)

dot_T_R = 1./(c_pR * m_ges) * ((m_dot_f * c_pF * (T_F - T_R)) - (k_K *A_tank* (T_R - T_S)) - (fm_AWT * c_pR * (T_R - T_EK)) + (delH_R * k_R1 * (m_A-((m_A*m_AWT)/(m_W+m_A+m_P)))))
model.set_rhs('T_R', dot_T_R)
model.set_rhs('T_S', 1./(c_pS * m_S) * ((k_K *A_tank* (T_R - T_S)) - (k_K *A_tank* (T_S - Tout_M))))
model.set_rhs('Tout_M', 1./(c_pW * m_M_KW) * ((fm_M_KW * c_pW * (T_in_M - Tout_M)) + (k_K *A_tank* (T_S - Tout_M))))
model.set_rhs('T_EK', 1./(c_pR * m_AWT) * ((fm_AWT * c_pR * (T_R - T_EK)) - (alfa * (T_EK - Tout_AWT)) + (p_1 * k_R2 * (m_A/m_ges) * m_AWT * delH_R)))
model.set_rhs('Tout_AWT', 1./(c_pW * m_AWT_KW)* ((fm_AWT_KW * c_pW * (T_in_EK - Tout_AWT)) - (alfa * (Tout_AWT - T_EK))))
model.set_rhs('accum_monom', m_dot_f)
model.set_rhs('T_adiab', delH_R/(m_ges*c_pR)*dot_m_A-(dot_m_A+dot_m_W+dot_m_P)*(m_A*delH_R/(m_ges*m_ges*c_pR))+dot_T_R)

Finally, the model setup is completed:

[9]:

Build the model
model.setup()

Controller

Next, the model predictive controller is configured (in template_mpc.py). First, one member of the mpc class is generated with the prediction model defined above:

[10]:

mpc = do_mpc.controller.MPC(model)

Real processes are also subject to important safety constraints that are incorporated to account for possible failures of the equipment. In this case, the maximum temperature that the reactor would reach in the case of a cooling failure is constrained to be below \(109 ^\circ\)C. The temperature that the reactor would achieve in the case of a complete cooling failure is \(T_{\text{adiab}}\), hence it needs to stay beneath \(109 ^\circ\)C.

We choose the prediction horizon n_horizon, set the robust horizon n_robust to 1. The time step t_step is set to one second and parameters of the applied discretization scheme orthogonal collocation are as seen below:

[11]:

setup_mpc = {
 'n_horizon': 20,
 'n_robust': 1,
 'open_loop': 0,
 't_step': 50.0/3600.0,
 'state_discretization': 'collocation',
 'collocation_type': 'radau',
 'collocation_deg': 2,
 'collocation_ni': 2,
 'store_full_solution': True,
 # Use MA27 linear solver in ipopt for faster calculations:
 #'nlpsol_opts': {'ipopt.linear_solver': 'MA27'}
}

mpc.set_param(**setup_mpc)

Objective

The goal of the economic NMPC controller is to produce \(20680~\text{kg}\) of \(m_{\text{P}}\) as fast as possible. Additionally, we add a penalty on input changes for all three control inputs, to obtain a smooth control performance.

[12]:

_x = model.x
mterm = - _x['m_P'] # terminal cost
lterm = - _x['m_P'] # stage cost

mpc.set_objective(mterm=mterm, lterm=lterm)

mpc.set_rterm(m_dot_f=0.002, T_in_M=0.004, T_in_EK=0.002) # penalty on control input changes

Constraints

The temperature at which the polymerization reaction takes place strongly influences the properties of the resulting polymer. For this reason, the temperature of the reactor should be maintained in a range of \(\pm 2.0 ^\circ\)C around the desired reaction temperature \(T_{\text{set}}=90 ^\circ\)C in order to ensure that the produced polymer has the required properties.

The initial conditions and the bounds for all states are summarized in:

[image: polybounds]

and set via:

[13]:

auxiliary term
temp_range = 2.0

lower bound states
mpc.bounds['lower','_x','m_W'] = 0.0
mpc.bounds['lower','_x','m_A'] = 0.0
mpc.bounds['lower','_x','m_P'] = 26.0

mpc.bounds['lower','_x','T_R'] = 363.15 - temp_range
mpc.bounds['lower','_x','T_S'] = 298.0
mpc.bounds['lower','_x','Tout_M'] = 298.0
mpc.bounds['lower','_x','T_EK'] = 288.0
mpc.bounds['lower','_x','Tout_AWT'] = 288.0
mpc.bounds['lower','_x','accum_monom'] = 0.0

upper bound states
mpc.bounds['upper','_x','T_S'] = 400.0
mpc.bounds['upper','_x','Tout_M'] = 400.0
mpc.bounds['upper','_x','T_EK'] = 400.0
mpc.bounds['upper','_x','Tout_AWT'] = 400.0
mpc.bounds['upper','_x','accum_monom'] = 30000.0
mpc.bounds['upper','_x','T_adiab'] = 382.15

The upper bound of the reactor temperature is set via a soft-constraint:

[]:

mpc.set_nl_cons('T_R_UB', _x['T_R'], ub=363.15+temp_range, soft_constraint=True, penalty_term_cons=1e4)

The bounds of the inputsare summarized below:

[image: polyinputbounds]

and set via:

[14]:

lower bound inputs
mpc.bounds['lower','_u','m_dot_f'] = 0.0
mpc.bounds['lower','_u','T_in_M'] = 333.15
mpc.bounds['lower','_u','T_in_EK'] = 333.15

upper bound inputs
mpc.bounds['upper','_u','m_dot_f'] = 3.0e4
mpc.bounds['upper','_u','T_in_M'] = 373.15
mpc.bounds['upper','_u','T_in_EK'] = 373.15

Scaling

Because the magnitudes of the states and inputs are very different, the performance of the optimizer can be enhanced by properly scaling the states and inputs:

[15]:

states
mpc.scaling['_x','m_W'] = 10
mpc.scaling['_x','m_A'] = 10
mpc.scaling['_x','m_P'] = 10
mpc.scaling['_x','accum_monom'] = 10

control inputs
mpc.scaling['_u','m_dot_f'] = 100

Uncertain values

In a real system, usually the model parameters cannot be determined exactly, what represents an important source of uncertainty. In this work, we consider that two of the most critical parameters of the model are not precisely known and vary with respect to their nominal value. In particular, we assume that the specific reaction enthalpy \(\Delta H_{\text{R}}\) and the specific reaction rate \(k_0\) are constant but uncertain, having values that can vary \(\pm 30 \%\) with respect to
their nominal values

[16]:

delH_R_var = np.array([950.0, 950.0 * 1.30, 950.0 * 0.70])
k_0_var = np.array([7.0 * 1.00, 7.0 * 1.30, 7.0 * 0.70])

mpc.set_uncertainty_values(delH_R = delH_R_var, k_0 = k_0_var)

This means with n_robust=1, that 9 different scenarios are considered. The setup of the MPC controller is concluded by:

[17]:

mpc.setup()

Estimator

We assume, that all states can be directly measured (state-feedback):

[18]:

estimator = do_mpc.estimator.StateFeedback(model)

Simulator

To create a simulator in order to run the MPC in a closed-loop, we create an instance of the do-mpc simulator which is based on the same model:

[19]:

simulator = do_mpc.simulator.Simulator(model)

For the simulation, we use the same time step t_step as for the optimizer:

[20]:

params_simulator = {
 'integration_tool': 'cvodes',
 'abstol': 1e-10,
 'reltol': 1e-10,
 't_step': 50.0/3600.0
}

simulator.set_param(**params_simulator)

Realizations of uncertain parameters

For the simulatiom, it is necessary to define the numerical realizations of the uncertain parameters in p_num. First, we get the structure of the uncertain parameters:

[21]:

p_num = simulator.get_p_template()
tvp_num = simulator.get_tvp_template()

We define a function which is called in each simulation step, which returns the current realizations of the parameters with respect to defined inputs (in this case t_now):

[22]:

uncertain parameters
p_num['delH_R'] = 950 * np.random.uniform(0.75,1.25)
p_num['k_0'] = 7 * np.random.uniform(0.75*1.25)
def p_fun(t_now):
 return p_num
simulator.set_p_fun(p_fun)

By defining p_fun as above, the function will return a constant value for both uncertain parameters within a range of \(\pm 25\%\) of the nomimal value. To finish the configuration of the simulator, call:

[23]:

simulator.setup()

Closed-loop simulation

For the simulation of the MPC configured for the CSTR, we inspect the file main.py. We define the initial state of the system and set it for all parts of the closed-loop configuration:

[24]:

Set the initial state of the controller and simulator:
assume nominal values of uncertain parameters as initial guess
delH_R_real = 950.0
c_pR = 5.0

x0 is a property of the simulator - we obtain it and set values.
x0 = simulator.x0

x0['m_W'] = 10000.0
x0['m_A'] = 853.0
x0['m_P'] = 26.5

x0['T_R'] = 90.0 + 273.15
x0['T_S'] = 90.0 + 273.15
x0['Tout_M'] = 90.0 + 273.15
x0['T_EK'] = 35.0 + 273.15
x0['Tout_AWT'] = 35.0 + 273.15
x0['accum_monom'] = 300.0
x0['T_adiab'] = x0['m_A']*delH_R_real/((x0['m_W'] + x0['m_A'] + x0['m_P']) * c_pR) + x0['T_R']

mpc.x0 = x0
simulator.x0 = x0
estimator.x0 = x0

mpc.set_initial_guess()

Now, we simulate the closed-loop for 100 steps (and suppress the output of the cell with the magic command %%capture):

[25]:

%%capture
for k in range(100):
 u0 = mpc.make_step(x0)
 y_next = simulator.make_step(u0)
 x0 = estimator.make_step(y_next)

Animating the results

To animate the results, we first configure the do-mpc graphics object, which is initiated with the respective data object:

[48]:

mpc_graphics = do_mpc.graphics.Graphics(mpc.data)

We quickly configure Matplotlib.

[49]:

from matplotlib import rcParams
rcParams['axes.grid'] = True
rcParams['font.size'] = 18

We then create a figure, configure which lines to plot on which axis and add labels.

[50]:

%%capture
fig, ax = plt.subplots(5, sharex=True, figsize=(16,12))
plt.ion()
Configure plot:
mpc_graphics.add_line(var_type='_x', var_name='T_R', axis=ax[0])
mpc_graphics.add_line(var_type='_x', var_name='accum_monom', axis=ax[1])
mpc_graphics.add_line(var_type='_u', var_name='m_dot_f', axis=ax[2])
mpc_graphics.add_line(var_type='_u', var_name='T_in_M', axis=ax[3])
mpc_graphics.add_line(var_type='_u', var_name='T_in_EK', axis=ax[4])

ax[0].set_ylabel('T_R [K]')
ax[1].set_ylabel('acc. monom')
ax[2].set_ylabel('m_dot_f')
ax[3].set_ylabel('T_in_M [K]')
ax[4].set_ylabel('T_in_EK [K]')
ax[4].set_xlabel('time')

fig.align_ylabels()

After importing the necessary package:

[43]:

from matplotlib.animation import FuncAnimation, ImageMagickWriter

We obtain the animation with:

[51]:

def update(t_ind):
 print('Writing frame: {}.'.format(t_ind), end='\r')
 mpc_graphics.plot_results(t_ind=t_ind)
 mpc_graphics.plot_predictions(t_ind=t_ind)
 mpc_graphics.reset_axes()
 lines = mpc_graphics.result_lines.full
 return lines

n_steps = mpc.data['_time'].shape[0]

anim = FuncAnimation(fig, update, frames=n_steps, blit=True)

gif_writer = ImageMagickWriter(fps=5)
anim.save('anim_poly_batch.gif', writer=gif_writer)

Writing frame: 99.

[image: pbanim]

We are displaying recorded values as solid lines and predicted trajectories as dashed lines. Multiple dashed lines exist for different realizations of the uncertain scenarios.

The most interesting behavior here can be seen in the state T_R, which has the upper bound:

[38]:

mpc.bounds['upper', '_x', 'T_R']

[38]:

DM(375.15)

Due to robust control, we are approaching this value but hold a certain distance as some possible trajectories predict a temperature increase. As the reaction finishes we can safely increase the temperature because a rapid temperature change due to uncertainy is impossible.

 Oscillating masses

Oscillating masses

In this Jupyter Notebook we illustrate the example oscillating_masses_discrete.

Open an interactive online Jupyter Notebook with this content on Binder:

[image: Binder] [https://mybinder.org/v2/gh/do-mpc/do-mpc.git/master?filepath=%2Fdocumentation%2Fsource%2Fexample_gallery%2Foscillating_masses_discrete.ipynb]

The example consists of the three modules template_model.py, which describes the system model, template_mpc.py, which defines the settings for the control and template_simulator.py, which sets the parameters for the simulator. The modules are used in main.py for the closed-loop execution of the controller. One exemplary result will be presented at the end of this tutorial as a gif.

In the following the different parts are presented. But first, we start by importing basic modules and do-mpc.

[1]:

import numpy as np
import sys
from casadi import *

Add do_mpc to path. This is not necessary if it was installed via pip
sys.path.append('../../../')

Import do_mpc package:
import do_mpc

Model

In the following we will present the configuration, setup and connection between these blocks, starting with the model. The considered model are two horizontally oscillating masses interconnected via a spring where each one is connected via a spring to a wall, as shown below:

[image: SegmentLocal]

The states of each mass are its position \(s_i\) and velocity \(v_i\), \(i=1,2\). A force \(u_1\) can be applied to the right mass. The via first-order hold and a sampling time of 0.5 seconds discretized model \(x_{k+1} = A x_k + B u_k\) is given by:

\[\begin{split}A = \begin{bmatrix} 0.763 & 0.460& 0.115& 0.020 \\
 −0.899 & 0.763 & 0.420 & 0.115 \\
 0.115 & 0.020 & 0.763 & 0.460 \\
 0.420 & 0.115 & −0.899 & 0.763 \\ \end{bmatrix}, \qquad
 B = \begin{bmatrix} 0.014 \\ 0.063 \\ 0.221 \\ 0.367 \\ \end{bmatrix},\end{split}\]

where \(x = [s_1, v_1, s_2, v_2]^T\) and \(u = [u_1]\).

The discrete model is initiated by:

[2]:

model_type = 'discrete' # either 'discrete' or 'continuous'
model = do_mpc.model.Model(model_type)

States and control inputs

The states and the inputs are directly created as vectors:

[3]:

_x = model.set_variable(var_type='_x', var_name='x', shape=(4,1))
_u = model.set_variable(var_type='_u', var_name='u', shape=(1,1))

Afterwards the discrete-time LTI model is added:

[4]:

A = np.array([[0.763, 0.460, 0.115, 0.020],
 [-0.899, 0.763, 0.420, 0.115],
 [0.115, 0.020, 0.763, 0.460],
 [0.420, 0.115, -0.899, 0.763]])

B = np.array([[0.014],
 [0.063],
 [0.221],
 [0.367]])

x_next = A@_x + B@_u

model.set_rhs('x', x_next)

Additionally, we will define an expression, which represents the stage and terminal cost of our control problem. This term will be later used as the cost in the MPC formulation and can be used to directly plot the trajectory of the cost of each state.

[5]:

model.set_expression(expr_name='cost', expr=sum1(_x**2))

[5]:

SX((((sq(x_0)+sq(x_1))+sq(x_2))+sq(x_3)))

The model setup is completed via:

[6]:

Build the model
model.setup()

Controller

Next, the model predictive controller is configured. First, one member of the mpc class is generated with the prediction model defined above:

[7]:

mpc = do_mpc.controller.MPC(model)

We choose the prediction horizon n_horizon to 7 and set the robust horizon n_robust to zero, because no uncertainties are present. The time step t_step is set to 0.5 seconds (like the discretization time step)). There is no need to apply a discretization scheme, because the system is discrete:

[8]:

setup_mpc = {
 'n_robust': 0,
 'n_horizon': 7,
 't_step': 0.5,
 'state_discretization': 'discrete',
 'store_full_solution':True,
 # Use MA27 linear solver in ipopt for faster calculations:
 #'nlpsol_opts': {'ipopt.linear_solver': 'MA27'}
}

mpc.set_param(**setup_mpc)

Objective

The goal of the controller is to bring the system to the origin, hence we apply a quadratic cost with weight one to every state and penalty on input changes for a smooth operation. This is here done by using the the cost expression defined in the model:

[9]:

mterm = model.aux['cost'] # terminal cost
lterm = model.aux['cost'] # terminal cost
 # stage cost

mpc.set_objective(mterm=mterm, lterm=lterm)

mpc.set_rterm(u=1e-4) # input penalty

Constraints

In the next step, the constraints of the control problem are set. In this case, there are only upper and lower bounds for each state and the input. The displacement has to fulfill \(-4\text{m} \leq s_i \leq 4\text{m}\), the velocity \(-10 \text{ms}^{-1} \leq v_i \leq 10\text{ms}^{-1}\) and the force cannot exceed \(-0.5\text{N} \leq u_1 \leq 0.5\text{N}\):

[10]:

max_x = np.array([[4.0], [10.0], [4.0], [10.0]])

lower bounds of the states
mpc.bounds['lower','_x','x'] = -max_x

upper bounds of the states
mpc.bounds['upper','_x','x'] = max_x

lower bounds of the input
mpc.bounds['lower','_u','u'] = -0.5

upper bounds of the input
mpc.bounds['upper','_u','u'] = 0.5

The setup of the MPC controller is concluded by:

[11]:

mpc.setup()

Estimator

We assume, that all states can be directly measured (state-feedback):

[12]:

estimator = do_mpc.estimator.StateFeedback(model)

Simulator

To create a simulator in order to run the MPC in a closed-loop, we create an instance of the do-mpc simulator which is based on the same model:

[13]:

simulator = do_mpc.simulator.Simulator(model)

Because the model is discrete, we do not need to specify options for the integration necessary for simulating the system. We only set the time step t_step which is identical to the one used for the optimization and finish the setup of the simulator:

[14]:

simulator.set_param(t_step = 0.1)
simulator.setup()

Closed-loop simulation

For the simulation of the MPC configured for the oscillating masses, we inspect the file main.py. We set the initial state of the system (randomly seeded) and set it for all parts of the closed-loop configuration:

[15]:

Seed
np.random.seed(99)

Initial state
e = np.ones([model.n_x,1])
x0 = np.random.uniform(-3*e,3*e) # Values between +3 and +3 for all states
mpc.x0 = x0
simulator.x0 = x0
estimator.x0 = x0

Use initial state to set the initial guess.
mpc.set_initial_guess()

Now, we simulate the closed-loop for 50 steps (and suppress the output of the cell with the magic command %%capture):

[16]:

%%capture
for k in range(50):
 u0 = mpc.make_step(x0)
 y_next = simulator.make_step(u0)
 x0 = estimator.make_step(y_next)

Displaying the results

After some slight configuration of matplotlib:

[17]:

from matplotlib import rcParams
rcParams['axes.grid'] = True
rcParams['font.size'] = 18

We use the convenient default_plot function of the graphics module, to obtain the graphic below.

[18]:

import matplotlib.pyplot as plt
fig, ax, graphics = do_mpc.graphics.default_plot(mpc.data, figsize=(16,9))
graphics.plot_results()
graphics.reset_axes()
plt.show()

[image: ../_images/example_gallery_oscillating_masses_discrete_37_0.png]

We can see that the control objective was sucessfully fulfilled and that bounds, e.g. for the control inputs are satisfied.

 Double inverted pendulum

Double inverted pendulum

In this Jupyter Notebook we illustrate the example DIP. This example illustrates how to use DAE models in do-mpc.

Open an interactive online Jupyter Notebook with this content on Binder:

[image: Binder] [https://mybinder.org/v2/gh/do-mpc/do-mpc/master?labpath=%2Fdocumentation%2Fsource%2Fexample_gallery%2FDIP.ipynb]

The example consists of the three modules template_model.py, which describes the system model, template_mpc.py, which defines the settings for the control and template_simulator.py, which sets the parameters for the simulator. The modules are used in main.py for the closed-loop execution of the controller.

We start by importing basic modules and do-mpc.

[1]:

import numpy as np
import sys
from casadi import *

Add do_mpc to path. This is not necessary if it was installed via pip
sys.path.append('../../../')

Import do_mpc package:
import do_mpc

Model

In the following we will present the configuration, setup and connection between these blocks, starting with the model.

In this example we consider the double pendulum on a card as depicted below:

[image: 78316c0719644ec6a5b49d8051759652]

The system is described in terms of its horizontal position \(x\) and the two angles \(\theta\), where \(\theta_1 = \theta_2 = 0\) denotes the upright position.

We will formulate a continuous dynamic model for this system and start by initiating a do-mpc Model instance:

[2]:

model_type = 'continuous' # either 'discrete' or 'continuous'
model = do_mpc.model.Model(model_type)

Parameters

The model is configured with the following (certain) parameters:

[3]:

m0 = 0.6 # kg, mass of the cart
m1 = 0.2 # kg, mass of the first rod
m2 = 0.2 # kg, mass of the second rod
L1 = 0.5 # m, length of the first rod
L2 = 0.5 # m, length of the second rod

g = 9.80665 # m/s^2, Gravity

We furthermore introduce the following derived parameters to conveniently formulate the model equations below.

[4]:

l1 = L1/2 # m,
l2 = L2/2 # m,
J1 = (m1 * l1**2) / 3 # Inertia
J2 = (m2 * l2**2) / 3 # Inertia

h1 = m0 + m1 + m2
h2 = m1*l1 + m2*L1
h3 = m2*l2
h4 = m1*l1**2 + m2*L1**2 + J1
h5 = m2*l2*L1
h6 = m2*l2**2 + J2
h7 = (m1*l1 + m2*L1) * g
h8 = m2*l2*g

Euler-Lagrangian equations

The dynamics of the double pendulum can be derived from the Euler-Lagrangian equations, which yield:

\begin{align}
h_1\ddot{x}+h_2\ddot{\theta}_1\cos(\theta_1)+h_3\ddot{\theta}_2\cos(\theta_2)
&= (h_2\dot{\theta}_1^{2}\sin(\theta_1) + h_3\dot{\theta}_2^{2}\sin(\theta_2) + u)\\
h_2\cos(\theta_1)\ddot{x} + h_4\ddot{\theta}_1 + h_5\cos(\theta_1-\theta_2)\ddot{\theta}_2
&= (h_7\sin(\theta_1) - h_5\dot{\theta}_2^{2}\sin(\theta_1-\theta_2))\\
h_3\cos(\theta_2)\ddot{x} + h_5\cos(\theta_1-\theta_2)\ddot{\theta}_1 + h_6\ddot{\theta}_2
&= (h_5\dot{\theta}_1^{2}\sin(\theta_1-\theta_2) + h_8\sin(\theta_2))
\end{align}
we introduce the states

\[x=[x,\theta_1, \theta_2, \dot{x}, \dot{\theta}_1, \dot{\theta}_2]^T\]

and input:

\[u = f\]

which is the horizontal force applied to the cart.

[5]:

pos = model.set_variable('_x', 'pos')
theta = model.set_variable('_x', 'theta', (2,1))
dpos = model.set_variable('_x', 'dpos')
dtheta = model.set_variable('_x', 'dtheta', (2,1))

u = model.set_variable('_u', 'force')

At this point we have two options. The typical approach would be to rewrite the system as:

\[M(x) \dot x = A(x) x + B u\]

where it can be shown that

\[\det(M) > 0, \forall x\]

such that we can obtain the ODE:

\[\dot x = M(x)^{-1}(A(x)x + B u)\]

do-mpc fully supports this option but it requires some nasty reformulations of the above equations and yields a very complex expression for the ODE.

Instead we suggest …

Differential algebraic equation (DAE)

We introduce new algebraic states

\[z=[\ddot{x}, \ddot{\theta}_1, \ddot{\theta}_2]^T\]

[6]:

ddpos = model.set_variable('_z', 'ddpos')
ddtheta = model.set_variable('_z', 'ddtheta', (2,1))

which makes it very convenient to formulate the ODE in terms of \(x,u,z\):

\[\dot{x} = [\dot{x}, \dot{\theta}_1, \dot{\theta}_2, \ddot{x}, \ddot{\theta}_1, \ddot{\theta}_2]^T\]

[7]:

model.set_rhs('pos', dpos)
model.set_rhs('theta', dtheta)
model.set_rhs('dpos', ddpos)
model.set_rhs('dtheta', ddtheta)

The only remaining challenge is to implement the relationship between \(x,u\) and \(z\), in the form of:

\[g(x,u,z)=0\]

with do-mpc this is easily achieved:

[8]:

euler_lagrange = vertcat(
 # 1
 h1*ddpos+h2*ddtheta[0]*cos(theta[0])+h3*ddtheta[1]*cos(theta[1])
 - (h2*dtheta[0]**2*sin(theta[0]) + h3*dtheta[1]**2*sin(theta[1]) + u),
 # 2
 h2*cos(theta[0])*ddpos + h4*ddtheta[0] + h5*cos(theta[0]-theta[1])*ddtheta[1]
 - (h7*sin(theta[0]) - h5*dtheta[1]**2*sin(theta[0]-theta[1])),
 # 3
 h3*cos(theta[1])*ddpos + h5*cos(theta[0]-theta[1])*ddtheta[0] + h6*ddtheta[1]
 - (h5*dtheta[0]**2*sin(theta[0]-theta[1]) + h8*sin(theta[1]))
)

model.set_alg('euler_lagrange', euler_lagrange)

with just a few lines of code we have defined the dynamics of the double pendulum!

Energy equations

The next step is to introduce new “auxiliary” expressions to do-mpc for the kinetic and potential energy of the system. This is required in this example, because we will need these expressions for the formulation of the MPC controller.

Introducing these expressions has the additional advantage that do-mpc saves and exports the calculated values, which is great for monitoring and debugging.

For the kinetic energy, we have:

\begin{align}
E_{\text{kin.,cart}} &= \frac{1}{2} m \dot{x}^{2}\\
E_{\text{kin.,}p_1} &= \frac{1}{2} m_1 (
 (\dot{x} + l_1 \dot{\theta}_1 \cos(\theta_1))^{2} +
 (l_1 \dot{\theta}_1 \sin(\theta_1))^{2}) + \frac{1}{2} J_1 \dot{\theta}_1^{2}\\
E_{\text{kin,}p_2} &= \frac{1}{2} m_2 (
 (\dot{x} + L_1 \dot{\theta}_1 \cos(\theta_1) + l_2 \dot{\theta}_2 \cos(\theta_2))^{2} \\
 &+ (L_1 \dot{\theta}_1 \sin(\theta_1) + l_2 \dot{\theta}_2 \sin(\theta_2))^2) + \frac{1}{2} J_2 \dot{\theta}_1^{2}
\end{align}
and for the potential energy:

\[E_{\text{pot.}} = m_1 g l_1 \cos(
 \theta_1) + m_2 g (L_1 \cos(\theta_1) +
 l_2 \cos(\theta_2))\]

It only remains to formulate the expressions and set them to the model:

[9]:

E_kin_cart = 1 / 2 * m0 * dpos**2
E_kin_p1 = 1 / 2 * m1 * (
 (dpos + l1 * dtheta[0] * cos(theta[0]))**2 +
 (l1 * dtheta[0] * sin(theta[0]))**2) + 1 / 2 * J1 * dtheta[0]**2
E_kin_p2 = 1 / 2 * m2 * (
 (dpos + L1 * dtheta[0] * cos(theta[0]) + l2 * dtheta[1] * cos(theta[1]))**2 +
 (L1 * dtheta[0] * sin(theta[0]) + l2 * dtheta[1] * sin(theta[1]))**
 2) + 1 / 2 * J2 * dtheta[0]**2

E_kin = E_kin_cart + E_kin_p1 + E_kin_p2

E_pot = m1 * g * l1 * cos(
theta[0]) + m2 * g * (L1 * cos(theta[0]) +
 l2 * cos(theta[1]))

model.set_expression('E_kin', E_kin)
model.set_expression('E_pot', E_pot)

[9]:

SX(((0.490333*cos(theta_0))+(1.96133*((0.5*cos(theta_0))+(0.25*cos(theta_1))))))

Finally, the model setup is completed:

[10]:

Build the model
model.setup()

Controller

Next, the controller is configured. First, an instance of the MPC class is generated with the prediction model defined above:

[11]:

mpc = do_mpc.controller.MPC(model)

We choose the prediction horizon n_horizon=100, set the robust horizon n_robust = 0. The time step t_step is set to \(0.04s\) and parameters of the applied discretization scheme orthogonal collocation are as seen below:

[12]:

setup_mpc = {
 'n_horizon': 100,
 'n_robust': 0,
 'open_loop': 0,
 't_step': 0.04,
 'state_discretization': 'collocation',
 'collocation_type': 'radau',
 'collocation_deg': 3,
 'collocation_ni': 1,
 'store_full_solution': True,
 # Use MA27 linear solver in ipopt for faster calculations:
 'nlpsol_opts': {'ipopt.linear_solver': 'mumps'}
}
mpc.set_param(**setup_mpc)

Objective

The control objective is to errect the double pendulum and to stabilize it in the up-up position. It is not straight-forward to formulate an objective which yields this result. Classical set-point tracking, e.g. with the set-point:

\[\theta_s = [0,0,0]\]

and a quadratic cost:

\[J = \sum_{k=0}^N (\theta-\theta_s)^2\]

is known to work very poorly. Clearly, the problem results from the fact that \(\theta_s = 2\pi n,\ n\in\mathbb{Z}\) is also a valid solution.

Instead we will use an energy-based formulation for the objective. If we think of energy in terms of potential and kinetic energy it is clear that we want to maximize the potential energy (up-up position) and minimize the kinetic energy (stabilization).

Since we have already introduced the expressions for the potential and kinetic energy in the model, we can now simply reuse these expresssions for the fomulation of the objective function, as shown below:

[14]:

mterm = model.aux['E_kin'] - model.aux['E_pot'] # terminal cost
lterm = model.aux['E_kin'] - model.aux['E_pot'] # stage cost

mpc.set_objective(mterm=mterm, lterm=lterm)
Input force is implicitly restricted through the objective.
mpc.set_rterm(force=0.1)

Constraints

In the next step, the constraints of the control problem are set. In this case, there is only an upper and lower bounds for the input.

[15]:

mpc.bounds['lower','_u','force'] = -4
mpc.bounds['upper','_u','force'] = 4

We can now setup the controller.

[16]:

mpc.setup()

Estimator

We assume, that all states can be directly measured (state-feedback):

[17]:

estimator = do_mpc.estimator.StateFeedback(model)

Simulator

To create a simulator in order to run the MPC in a closed-loop, we create an instance of the do-mpc simulator which is based on the same model:

[18]:

simulator = do_mpc.simulator.Simulator(model)

For the simulation, we use the time step t_step as for the optimizer:

[19]:

params_simulator = {
 # Note: cvode doesn't support DAE systems.
 'integration_tool': 'idas',
 'abstol': 1e-10,
 'reltol': 1e-10,
 't_step': 0.04
}

simulator.set_param(**params_simulator)

[20]:

simulator.setup()

Closed-loop simulation

For the simulation of the MPC configured for the DIP, we inspect the file main.py. We define the initial state of the system and set for all parts of the closed-loop configuration:

[21]:

simulator.x0['theta'] = 0.99*np.pi

x0 = simulator.x0.cat.full()

mpc.x0 = x0
estimator.x0 = x0

mpc.set_initial_guess()

Note that mpc.set_initial_guess() is very important in this example. Also note that we didn’t set the initial state at exactly \(\pi\) which results in unfavorable numerical issues (it will work however).

Prepare visualization

For the visualization of the control performance, we first import matplotlib and change some basic settings:

[22]:

import matplotlib.pyplot as plt
plt.ion()
from matplotlib import rcParams
rcParams['text.usetex'] = False
rcParams['axes.grid'] = True
rcParams['lines.linewidth'] = 2.0
rcParams['axes.labelsize'] = 'xx-large'
rcParams['xtick.labelsize'] = 'xx-large'
rcParams['ytick.labelsize'] = 'xx-large'

We use the plotting capabilities, which are included in do-mpc. The mpc_graphics contain information like the current estimated state and the predicted trajectory of the states and inputs based on the solution of the control problem. The sim_graphics contain the information about the simulated evaluation of the system.

[23]:

mpc_graphics = do_mpc.graphics.Graphics(mpc.data)

For the example of the DIP we create a new function which takes as input the states (at a given time \(k\)) and returns the x and y positions of the two bars (the arms of the pendulum).

[24]:

def pendulum_bars(x):
 x = x.flatten()
 # Get the x,y coordinates of the two bars for the given state x.
 line_1_x = np.array([
 x[0],
 x[0]+L1*np.sin(x[1])
])

 line_1_y = np.array([
 0,
 L1*np.cos(x[1])
])

 line_2_x = np.array([
 line_1_x[1],
 line_1_x[1] + L2*np.sin(x[2])
])

 line_2_y = np.array([
 line_1_y[1],
 line_1_y[1] + L2*np.cos(x[2])
])

 line_1 = np.stack((line_1_x, line_1_y))
 line_2 = np.stack((line_2_x, line_2_y))

 return line_1, line_2

We then setup a graphic:

[25]:

%%capture

fig = plt.figure(figsize=(16,9))

ax1 = plt.subplot2grid((4, 2), (0, 0), rowspan=4)
ax2 = plt.subplot2grid((4, 2), (0, 1))
ax3 = plt.subplot2grid((4, 2), (1, 1))
ax4 = plt.subplot2grid((4, 2), (2, 1))
ax5 = plt.subplot2grid((4, 2), (3, 1))

ax2.set_ylabel('E_{kin} [J]')
ax3.set_ylabel('E_{pot} [J]')
ax4.set_ylabel('Angle [rad]')
ax5.set_ylabel('Input force [N]')

Axis on the right.
for ax in [ax2, ax3, ax4, ax5]:
 ax.yaxis.set_label_position("right")
 ax.yaxis.tick_right()
 if ax != ax5:
 ax.xaxis.set_ticklabels([])

ax5.set_xlabel('time [s]')

mpc_graphics.add_line(var_type='_aux', var_name='E_kin', axis=ax2)
mpc_graphics.add_line(var_type='_aux', var_name='E_pot', axis=ax3)
mpc_graphics.add_line(var_type='_x', var_name='theta', axis=ax4)
mpc_graphics.add_line(var_type='_u', var_name='force', axis=ax5)

ax1.axhline(0,color='black')

bar1 = ax1.plot([],[], '-o', linewidth=5, markersize=10)
bar2 = ax1.plot([],[], '-o', linewidth=5, markersize=10)

ax1.set_xlim(-1.8,1.8)
ax1.set_ylim(-1.2,1.2)
ax1.set_axis_off()

fig.align_ylabels()
fig.tight_layout()

Run open-loop

Before we test the closed loop case, lets plot one open-loop prediction to check how the resulting graphic looks like.

[26]:

u0 = mpc.make_step(x0)

**
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Eclipse Public License (EPL).
 For more information visit http://projects.coin-or.org/Ipopt
**

This is Ipopt version 3.12.3, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian...: 19406
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 6814

Total number of variables............................: 4330
 variables with only lower bounds: 0
 variables with lower and upper bounds: 100
 variables with only upper bounds: 0
Total number of equality constraints.................: 4206
Total number of inequality constraints...............: 0
 inequality constraints with only lower bounds: 0
 inequality constraints with lower and upper bounds: 0
 inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 0 1.9799658e+02 4.62e-02 1.00e-03 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
 1 1.9809206e+02 7.33e-05 3.25e-04 -1.0 1.53e+00 -4.0 1.00e+00 1.00e+00h 1
 2 1.9808344e+02 8.59e-05 1.22e-04 -2.5 4.56e-01 -3.6 1.00e+00 1.00e+00h 1
 3 1.9753270e+02 2.78e+00 5.70e-01 -3.8 2.32e+01 -4.1 6.69e-01 1.00e+00f 1
 4 1.9586898e+02 2.82e-01 3.12e-01 -3.8 1.14e+01 -3.6 3.78e-01 1.00e+00h 1
 5 1.9529675e+02 1.38e+00 1.17e+00 -3.8 5.85e+01 -4.1 4.40e-01 4.20e-01H 1
 6 1.9266817e+02 2.02e-01 3.44e-01 -3.8 9.02e+00 -3.7 1.63e-02 1.00e+00h 1
 7 1.9230233e+02 1.47e-01 2.58e-01 -3.8 2.10e+01 -4.2 9.32e-01 2.44e-01h 1
 8 1.9168748e+02 3.42e-02 2.53e-02 -3.8 6.96e+00 -3.7 1.00e+00 1.00e+00h 1
 9 1.9143723e+02 3.64e-02 1.08e-01 -3.8 2.48e+01 -4.2 1.00e+00 1.82e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 10 1.9079375e+02 3.46e-01 7.82e-01 -3.8 4.32e+02 -4.7 4.15e-01 6.65e-02f 1
 11 1.8908314e+02 4.01e-01 4.09e-01 -3.8 4.52e+01 -4.3 1.00e+00 8.14e-01h 1
 12 1.8756874e+02 2.58e-01 1.53e-01 -3.8 1.60e+01 -3.8 9.86e-01 1.00e+00h 1
 13 1.8672974e+02 1.14e-01 1.17e-01 -3.8 9.14e+00 -3.4 1.00e+00 7.85e-01h 1
 14 1.8599478e+02 2.54e-01 2.29e-01 -3.8 6.29e+01 -3.9 1.00e+00 1.66e-01f 1
 15 1.8497700e+02 2.04e-01 2.37e-01 -3.8 1.23e+01 -3.5 4.49e-01 1.00e+00h 1
 16 1.8432030e+02 1.32e+00 8.74e-01 -3.8 2.65e+02 -3.9 4.70e-01 1.13e-01f 1
 17 1.8419900e+02 1.26e+00 8.39e-01 -3.8 1.56e+02 -4.4 4.11e-01 4.08e-02h 1
 18 1.8356256e+02 1.91e-01 3.51e-01 -3.8 1.42e+01 -4.0 4.33e-01 1.00e+00h 1
 19 1.8341217e+02 8.79e-02 1.36e-01 -3.8 1.80e+01 -3.6 3.87e-01 6.81e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 20 1.8278812e+02 1.76e-01 8.50e-02 -3.8 1.52e+01 -4.0 5.64e-01 1.00e+00h 1
 21 1.8138293e+02 1.20e+00 1.92e-01 -3.8 4.27e+01 -4.5 7.99e-01 1.00e+00h 1
 22 1.8054638e+02 9.70e-01 2.77e-01 -3.8 2.47e+02 -5.0 1.00e+00 1.90e-01h 1
 23 1.7935640e+02 6.65e-01 6.44e-01 -3.8 7.49e+01 -4.6 1.00e+00 1.00e+00h 1
 24 1.7911838e+02 2.49e-02 6.02e-02 -3.8 2.17e+01 -4.1 8.37e-01 1.00e+00h 1
 25 1.7853437e+02 1.68e-01 8.35e-02 -3.8 3.72e+01 -4.6 1.00e+00 1.00e+00h 1
 26 1.7811649e+02 2.22e-01 1.28e-01 -3.8 1.79e+02 -5.1 2.68e-01 1.72e-01h 1
 27 1.7728888e+02 7.04e-01 7.44e-01 -3.8 8.19e+01 -4.7 1.00e+00 1.00e+00h 1
 28 1.7707269e+02 2.61e-02 7.21e-02 -3.8 2.92e+01 -4.2 7.54e-01 1.00e+00h 1
 29 1.7675347e+02 7.15e-02 7.34e-02 -3.8 5.09e+01 -4.7 1.00e+00 5.45e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 30 1.7656004e+02 8.96e-02 1.00e-01 -3.8 3.03e+02 -5.2 6.98e-02 6.52e-02h 1
 31 1.7563497e+02 5.41e-01 5.17e-01 -3.8 9.26e+01 -4.8 1.00e+00 1.00e+00h 1
 32 1.7525047e+02 3.61e-01 2.32e-01 -3.8 9.44e+01 -4.3 1.00e+00 4.12e-01h 1
 33 1.7495933e+02 3.41e-02 1.10e-01 -3.8 3.39e+01 -3.9 1.00e+00 1.00e+00h 1
 34 1.7432319e+02 2.26e-01 2.67e-01 -3.8 9.19e+01 -4.4 1.00e+00 6.21e-01h 1
 35 1.7390163e+02 3.10e-02 2.47e-01 -3.8 2.92e+01 -4.0 7.87e-01 1.00e+00h 1
 36 1.7313607e+02 1.12e-01 2.71e-01 -3.8 5.51e+01 -4.4 9.59e-01 1.00e+00h 1
 37 1.7299030e+02 1.06e-01 2.56e-01 -3.8 1.38e+02 -4.9 2.75e-01 6.47e-02h 1
 38 1.7267489e+02 1.08e-01 2.52e-01 -3.8 3.03e+02 -5.4 2.44e-01 7.04e-02h 1
 39 1.7196110e+02 1.73e-01 2.89e-01 -3.8 1.32e+02 -5.0 2.15e-01 4.92e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 40 1.7170067e+02 8.75e-02 1.86e-01 -3.8 5.09e+01 -4.5 1.00e+00 6.14e-01h 1
 41 1.7115391e+02 5.65e-01 4.01e-01 -3.8 1.83e+02 -5.0 5.43e-01 5.38e-01h 1
 42 1.7100405e+02 4.56e-01 2.74e-01 -3.8 1.60e+02 -4.6 6.76e-01 2.38e-01h 1
 43 1.7087350e+02 5.18e-02 2.11e-01 -3.8 4.92e+01 -4.2 1.00e+00 1.00e+00h 1
 44 1.7030581e+02 5.44e-01 9.89e-01 -3.8 1.17e+02 -4.6 7.19e-01 9.99e-01h 1
 45 1.7005616e+02 8.90e-02 2.77e-01 -3.8 6.20e+01 -4.2 1.00e+00 9.02e-01h 1
 46 1.6976868e+02 9.06e-02 3.76e-01 -3.8 5.71e+01 -4.7 1.00e+00 1.00e+00h 1
 47 1.6949702e+02 1.31e-01 4.04e-01 -3.8 1.38e+02 -5.2 1.00e+00 4.11e-01h 1
 48 1.6825821e+02 3.02e+00 3.39e+00 -3.8 2.78e+02 -5.7 1.00e+00 1.00e+00h 1
 49 1.6835630e+02 2.53e+00 2.93e+00 -3.8 1.17e+02 -4.3 1.00e+00 1.68e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 50 1.6831590e+02 1.03e-01 4.54e-01 -3.8 1.47e+02 -4.8 1.00e+00 1.00e+00h 1
 51 1.6813870e+02 1.20e-01 5.22e-01 -3.8 2.67e+02 -5.3 9.77e-01 1.42e-01h 1
 52 1.6683410e+02 3.09e+00 7.38e+00 -3.8 2.59e+02 -4.9 1.00e+00 1.00e+00f 1
 53 1.6767930e+02 8.18e-01 4.75e+00 -3.8 1.01e+02 -4.4 1.00e+00 1.00e+00h 1
 54 1.6658953e+02 2.92e-01 7.99e-01 -3.8 1.41e+02 -4.9 3.94e-01 1.00e+00h 1
 55 1.6611363e+02 5.81e-01 7.49e-01 -3.8 1.67e+02 -5.4 6.53e-01 7.96e-01h 1
 56 1.6568816e+02 4.98e-01 3.06e-01 -3.8 1.11e+02 -5.0 6.60e-01 1.00e+00h 1
 57 1.6563425e+02 4.04e-01 2.37e-01 -3.8 8.71e+01 -4.5 1.00e+00 2.05e-01h 1
 58 1.6509801e+02 9.33e-01 1.38e+00 -3.8 3.55e+02 -5.0 9.47e-01 3.49e-01h 1
 59 1.6331635e+02 6.14e+00 2.03e+01 -3.8 6.58e+02 -4.6 7.55e-01 4.61e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 60 1.6332304e+02 6.11e+00 2.02e+01 -3.8 1.62e+02 -5.1 7.54e-02 4.62e-03h 1
 61 1.6433321e+02 3.00e+00 1.10e+01 -3.8 8.37e+01 -4.6 1.00e+00 6.15e-01h 1
 62 1.6491421e+02 9.96e-01 5.14e+00 -3.8 1.20e+02 -5.1 1.92e-01 1.00e+00h 1
 63 1.6190117e+02 1.05e+01 1.07e+01 -3.8 2.91e+03 -5.6 7.46e-02 1.38e-01f 1
 64 1.6192596e+02 1.04e+01 1.06e+01 -3.8 1.23e+02 -5.2 3.81e-01 1.32e-02h 1
 65 1.6425769e+02 1.91e+00 1.36e+00 -3.8 9.76e+01 -4.7 2.60e-01 1.00e+00h 1
 66 1.6293148e+02 7.12e-01 1.33e+00 -3.8 2.08e+02 -5.2 3.63e-01 5.55e-01h 1
 67 1.6206843e+02 7.95e-01 1.90e+00 -3.8 1.86e+02 -4.8 5.50e-01 1.00e+00h 1
 68 1.6177105e+02 4.34e-01 1.27e+00 -3.8 9.70e+01 -4.4 1.00e+00 6.91e-01h 1
 69 1.6040557e+02 2.79e+00 3.27e+00 -3.8 6.57e+02 -4.8 2.32e-01 2.08e-01f 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 70 1.6003795e+02 2.21e+00 2.40e+00 -3.8 4.01e+02 -5.3 6.37e-01 2.03e-01h 1
 71 1.6019840e+02 1.06e-01 1.24e+00 -3.8 8.54e+01 -4.9 1.00e+00 1.00e+00h 1
 72 1.5957075e+02 5.90e-01 7.94e-01 -3.8 4.21e+02 -5.4 2.99e-01 2.24e-01h 1
 73 1.5928692e+02 6.84e-01 7.55e-01 -3.8 1.58e+03 -4.9 1.02e-01 3.01e-02h 1
 74 1.5861499e+02 7.20e-01 2.35e+00 -3.8 1.85e+02 -4.5 1.00e+00 6.65e-01h 1
 75 1.5856253e+02 3.99e-01 1.24e+00 -3.8 4.73e+01 -4.1 1.00e+00 4.42e-01h 1
 76 1.5799508e+02 2.85e-01 6.18e-01 -3.8 8.43e+01 -4.6 1.00e+00 1.00e+00h 1
 77 1.5797097e+02 6.26e-03 2.33e-02 -3.8 2.28e+01 -4.1 1.00e+00 1.00e+00h 1
 78 1.5778892e+02 2.41e-02 2.28e-02 -3.8 9.83e+01 -5.1 2.84e-01 2.34e-01h 1
 79 1.5634981e+02 2.67e+00 1.45e+00 -3.8 2.04e+02 -5.6 6.16e-02 1.00e+00f 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 80 1.5646425e+02 2.08e-01 9.77e-01 -3.8 9.08e+01 -4.2 4.87e-01 1.00e+00h 1
 81 1.5628636e+02 1.53e-01 7.60e-01 -3.8 4.83e+01 -4.7 5.04e-01 2.71e-01h 1
 82 1.5524790e+02 6.66e-01 7.25e-01 -3.8 1.16e+02 -5.2 2.51e-01 8.23e-01h 1
 83 1.5485177e+02 6.30e-01 7.14e-01 -3.8 2.70e+02 -4.8 1.79e-01 1.06e-01h 1
 84 1.5379176e+02 1.35e+00 7.63e-01 -3.8 3.27e+03 -5.2 1.09e-02 2.80e-02f 1
 85 1.5361813e+02 8.28e-01 4.67e-01 -3.8 8.92e+01 -4.8 2.64e-01 3.83e-01h 1
 86 1.5232805e+02 1.28e+00 7.57e-01 -3.8 2.97e+02 -5.3 3.97e-01 4.44e-01h 1
 87 1.5040335e+02 3.35e+00 4.37e+00 -3.8 7.97e+02 -4.9 2.93e-02 2.42e-01h 1
 88 1.5094804e+02 1.92e+00 2.68e+00 -3.8 4.92e+01 -4.4 1.00e+00 4.59e-01h 1
 89 1.4949280e+02 1.27e+00 2.15e+00 -3.8 1.94e+02 -4.9 2.40e-01 9.64e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 90 1.4956815e+02 1.09e-01 3.28e-01 -3.8 6.06e+01 -4.5 9.43e-01 1.00e+00h 1
 91 1.4953537e+02 1.08e-01 3.24e-01 -3.8 2.05e+02 -5.0 9.33e-01 1.39e-02h 1
 92 1.4890139e+02 3.67e-01 4.89e-01 -3.8 6.13e+01 -4.5 5.63e-01 1.00e+00h 1
 93 1.4853303e+02 1.16e-01 2.57e-01 -3.8 4.13e+01 -4.1 1.00e+00 9.25e-01h 1
 94 1.4831508e+02 1.30e-01 2.35e-01 -3.8 8.21e+01 -4.6 5.57e-01 2.15e-01h 1
 95 1.4726021e+02 1.07e+00 7.33e-01 -3.8 2.51e+02 -5.1 2.49e-01 3.51e-01f 1
 96 1.4654416e+02 1.12e+00 9.25e-01 -3.8 1.17e+03 -5.6 3.47e-02 5.26e-02h 1
 97 1.4657503e+02 3.58e-01 3.25e-01 -3.8 3.14e+01 -4.2 1.00e+00 6.96e-01h 1
 98 1.4601623e+02 2.47e-01 2.11e-01 -3.8 6.58e+01 -4.7 9.09e-01 7.88e-01h 1
 99 1.4567054e+02 1.32e-01 1.96e-01 -3.8 4.59e+01 -4.3 5.09e-01 9.14e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 100 1.4488250e+02 6.12e-01 1.18e+00 -3.8 2.40e+02 -4.8 4.77e-01 3.43e-01f 1
 101 1.4463381e+02 3.51e-01 6.04e-01 -3.8 5.98e+01 -4.3 4.49e-01 4.32e-01h 1
 102 1.4363782e+02 5.96e-01 7.79e-01 -3.8 1.13e+02 -4.8 1.00e+00 8.25e-01h 1
 103 1.4307603e+02 5.59e-01 7.76e-01 -3.8 3.10e+02 -5.3 7.46e-02 1.57e-01h 1
 104 1.4182938e+02 1.26e+00 1.10e+00 -3.8 1.40e+02 -4.9 9.61e-01 7.94e-01h 1
 105 1.4154081e+02 9.89e-01 9.83e-01 -3.8 1.36e+02 -4.4 1.15e-01 2.45e-01h 1
 106 1.4152654e+02 6.10e-01 6.10e-01 -3.8 2.62e+01 -4.0 1.00e+00 3.82e-01h 1
 107 1.4088934e+02 4.59e-01 3.36e-01 -3.8 6.03e+01 -4.5 3.97e-01 1.00e+00h 1
 108 1.4038010e+02 3.71e-01 3.44e-01 -3.8 1.17e+02 -5.0 5.58e-01 3.97e-01h 1
 109 1.3959093e+02 5.25e-01 6.51e-01 -3.8 3.78e+02 -5.4 1.84e-01 1.75e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 110 1.3926145e+02 5.16e-01 6.25e-01 -3.8 3.36e+02 -5.0 6.16e-02 7.07e-02h 1
 111 1.3894595e+02 3.63e-01 3.82e-01 -3.8 9.13e+01 -4.6 1.00e+00 3.29e-01h 1
 112 1.3874127e+02 6.35e-02 1.29e-01 -3.8 3.72e+01 -4.2 1.00e+00 1.00e+00h 1
 113 1.3837559e+02 1.45e-01 3.03e-01 -3.8 1.29e+02 -4.6 2.60e-01 2.69e-01h 1
 114 1.3787255e+02 2.03e-01 3.13e-01 -3.8 4.38e+01 -4.2 5.40e-01 1.00e+00h 1
 115 1.3768399e+02 1.91e-01 2.62e-01 -3.8 9.58e+01 -4.7 4.32e-01 1.55e-01h 1
 116 1.3717559e+02 2.89e-01 2.68e-01 -3.8 2.38e+02 -5.2 1.68e-01 1.67e-01f 1
 117 1.3639192e+02 4.81e-01 5.56e-01 -3.8 8.70e+02 -5.6 4.84e-02 6.97e-02f 1
 118 1.3490462e+02 1.54e+00 1.58e+00 -3.8 1.35e+03 -5.2 5.93e-02 8.68e-02f 1
 119 1.3490818e+02 1.40e+00 1.44e+00 -3.8 3.72e+01 -3.9 7.39e-01 9.14e-02h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 120 1.3454765e+02 7.88e-01 6.30e-01 -3.8 1.07e+02 -4.4 1.00e+00 4.45e-01h 1
 121 1.3382891e+02 8.02e-01 1.05e+00 -3.8 4.07e+02 -4.8 2.62e-02 1.37e-01h 1
 122 1.3320144e+02 8.37e-01 1.06e+00 -3.8 7.34e+03 -5.3 1.93e-02 6.24e-03f 1
 123 1.3250550e+02 5.02e-01 4.48e-01 -3.8 1.34e+02 -4.9 1.00e+00 4.90e-01h 1
 124 1.3248374e+02 4.59e-01 4.09e-01 -3.8 4.23e+01 -4.5 1.00e+00 8.59e-02h 1
 125 1.3200480e+02 4.21e-01 3.63e-01 -3.8 1.87e+02 -4.9 5.69e-01 2.05e-01h 1
 126 1.3169215e+02 2.48e-01 1.67e-01 -3.8 7.07e+01 -4.5 1.00e+00 4.82e-01h 1
 127 1.3151459e+02 5.34e-02 1.28e-01 -3.8 3.19e+01 -4.1 1.00e+00 1.00e+00h 1
 128 1.3083326e+02 3.20e-01 7.78e-01 -3.8 1.21e+02 -4.6 6.13e-01 4.90e-01h 1
 129 1.3062369e+02 1.98e-01 4.53e-01 -3.8 4.02e+01 -4.1 1.00e+00 4.12e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 130 1.2943314e+02 8.04e-01 1.02e+00 -3.8 8.98e+01 -4.6 4.49e-01 1.00e+00h 1
 131 1.2864832e+02 6.08e-01 8.79e-01 -3.8 1.84e+02 -5.1 1.54e-01 3.35e-01h 1
 132 1.2843346e+02 5.04e-01 7.19e-01 -3.8 1.03e+02 -4.7 6.63e-01 1.74e-01h 1
 133 1.2826253e+02 1.27e-01 1.11e-01 -3.8 3.64e+01 -4.2 8.82e-01 7.38e-01h 1
 134 1.2767639e+02 2.47e-01 3.86e-01 -3.8 1.38e+02 -4.7 1.00e+00 3.44e-01h 1
 135 1.2689859e+02 4.00e-01 1.13e+00 -3.8 7.25e+01 -4.3 1.00e+00 1.00e+00h 1
 136 1.2678366e+02 3.92e-01 1.09e+00 -3.8 2.20e+02 -4.8 1.52e-02 3.89e-02h 1
 137 1.2579812e+02 1.11e+00 1.58e+00 -3.8 3.03e+04 -5.2 1.68e-03 2.70e-03f 1
 138 1.2552581e+02 8.71e-01 1.20e+00 -3.8 1.06e+02 -4.8 1.00e+00 2.15e-01h 1
 139 1.2531576e+02 5.98e-02 1.36e-01 -3.8 3.50e+01 -4.4 7.73e-01 1.00e+00h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 140 1.2448485e+02 3.68e-01 3.42e-01 -3.8 1.03e+02 -4.9 4.33e-01 6.11e-01h 1
 141 1.2365017e+02 4.10e-01 8.69e-01 -3.8 8.53e+01 -4.4 1.00e+00 8.14e-01h 1
 142 1.2339145e+02 1.73e-01 3.92e-01 -3.8 3.24e+01 -4.0 8.73e-01 6.28e-01h 1
 143 1.2299968e+02 1.65e-01 3.48e-01 -3.8 6.84e+01 -4.5 9.54e-01 3.50e-01h 1
 144 1.2189571e+02 6.78e-01 7.76e-01 -3.8 1.99e+02 -5.0 2.89e-01 3.78e-01f 1
 145 1.2148963e+02 6.73e-01 8.10e-01 -3.8 6.68e+02 -5.5 1.07e-01 4.38e-02h 1
 146 1.2039463e+02 7.14e-01 9.70e-01 -3.8 2.19e+02 -5.0 1.03e-01 3.81e-01h 1
 147 1.1894946e+02 1.39e+00 2.93e+00 -3.8 1.59e+02 -4.6 1.00e+00 8.37e-01h 1
 148 1.1886773e+02 8.30e-01 1.70e+00 -3.8 5.06e+01 -4.2 3.16e-01 3.99e-01h 1
 149 1.1769785e+02 7.95e-01 1.04e+00 -3.8 1.14e+02 -4.7 3.80e-01 8.73e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 150 1.1692299e+02 6.21e-01 9.49e-01 -3.8 1.88e+02 -5.1 4.14e-01 3.16e-01h 1
 151 1.1628021e+02 3.93e-01 3.40e-01 -3.8 9.29e+01 -4.7 5.26e-01 5.93e-01h 1
 152 1.1596667e+02 1.71e-01 3.11e-01 -3.8 5.82e+01 -4.3 1.00e+00 7.21e-01h 1
 153 1.1555936e+02 2.58e-01 5.55e-01 -3.8 3.54e+02 -4.8 2.06e-01 1.02e-01h 1
 154 1.1476575e+02 4.95e-01 6.02e-01 -3.8 5.98e+01 -4.3 5.20e-01 9.93e-01h 1
 155 1.1463494e+02 4.57e-01 5.55e-01 -3.8 1.64e+02 -4.8 1.48e-01 7.91e-02h 1
 156 1.1424206e+02 4.40e-01 5.21e-01 -3.8 3.11e+02 -5.3 1.09e-01 1.00e-01h 1
 157 1.1396062e+02 4.49e-01 5.25e-01 -3.8 2.17e+04 -5.8 1.38e-03 1.32e-03f 1
 158 1.1361445e+02 4.58e-01 5.16e-01 -3.8 1.60e+03 -5.3 1.42e-02 2.14e-02f 1
 159 1.1291241e+02 3.93e-01 3.59e-01 -3.8 1.57e+02 -4.9 2.82e-01 3.35e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 160 1.1246879e+02 2.21e-01 1.64e-01 -3.8 6.27e+01 -4.5 1.00e+00 6.15e-01f 1
 161 1.1119022e+02 1.18e+00 2.12e+00 -3.8 1.51e+03 -5.0 3.55e-02 6.60e-02f 1
 162 1.1097107e+02 1.03e+00 1.85e+00 -3.8 1.18e+02 -4.5 6.44e-03 1.33e-01h 1
 163 1.1062571e+02 1.03e+00 1.84e+00 -3.8 1.30e+03 -5.0 3.38e-02 1.61e-02h 1
 164 1.1049302e+02 7.93e-01 1.39e+00 -3.8 6.88e+01 -4.6 2.11e-01 2.32e-01h 1
 165 1.1039501e+02 7.77e-01 1.36e+00 -3.8 3.54e+02 -5.1 3.57e-02 2.09e-02h 1
 166 1.1019492e+02 5.15e-01 8.52e-01 -3.8 6.60e+01 -4.6 3.30e-01 3.37e-01h 1
 167 1.1001758e+02 4.84e-01 7.85e-01 -3.8 2.16e+02 -5.1 1.28e-01 6.54e-02h 1
 168 1.0892822e+02 1.02e+00 1.04e+00 -3.8 5.55e+03 -5.6 1.06e-02 1.68e-02f 1
 169 1.0880315e+02 2.96e-01 2.21e-01 -3.8 4.12e+01 -4.3 1.00e+00 7.13e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 170 1.0781742e+02 8.09e-01 2.02e+00 -3.8 9.29e+01 -4.7 5.53e-01 1.00e+00h 1
 171 1.0770287e+02 5.68e-01 1.42e+00 -3.8 4.38e+01 -4.3 7.05e-01 2.98e-01h 1
 172 1.0733575e+02 4.23e-01 1.02e+00 -3.8 9.29e+01 -4.8 2.96e-01 3.11e-01h 1
 173 1.0672927e+02 4.68e-01 7.80e-01 -3.8 2.71e+02 -5.3 1.60e-01 1.87e-01h 1
 174 1.0643176e+02 3.85e-01 5.25e-01 -3.8 1.32e+02 -4.8 4.35e-01 2.45e-01h 1
 175 1.0574448e+02 6.53e-01 7.64e-01 -3.8 9.20e+02 -5.3 7.55e-02 6.55e-02f 1
 176 1.0506841e+02 6.97e-01 7.23e-01 -3.8 2.14e+02 -4.9 3.64e-01 2.81e-01h 1
 177 1.0501340e+02 4.67e-01 5.44e-01 -3.8 5.16e+01 -4.5 1.96e-01 3.26e-01h 1
 178 1.0485871e+02 4.34e-01 5.71e-01 -3.8 2.19e+02 -4.9 5.23e-01 6.34e-02h 1
 179 1.0479127e+02 2.99e-01 4.53e-01 -3.8 4.78e+01 -4.5 1.00e+00 2.96e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 180 1.0472605e+02 2.87e-01 4.47e-01 -3.8 1.79e+02 -5.0 3.82e-01 3.25e-02h 1
 181 1.0397384e+02 6.94e-01 1.91e+00 -3.8 7.16e+04 -5.5 1.21e-03 9.75e-04f 1
 182 1.0388792e+02 4.95e-01 1.33e+00 -3.8 5.41e+01 -4.6 1.00e+00 2.87e-01f 1
 183 1.0374072e+02 4.69e-01 1.22e+00 -3.8 1.87e+02 -5.1 3.55e-01 6.97e-02h 1
 184 1.0370252e+02 3.81e-01 9.67e-01 -3.8 4.33e+01 -4.7 1.00e+00 1.97e-01h 1
 185 1.0347757e+02 3.51e-01 7.32e-01 -3.8 1.40e+02 -5.1 2.17e-02 1.75e-01h 1
 186 1.0312877e+02 4.04e-01 7.46e-01 -3.8 4.90e+02 -5.6 2.86e-01 8.16e-02h 1
 187 1.0277559e+02 5.10e-01 1.05e+00 -3.8 6.69e+02 -5.2 4.66e-02 7.02e-02h 1
 188 1.0267076e+02 4.38e-01 9.98e-01 -3.8 9.61e+01 -4.8 6.44e-01 1.59e-01h 1
 189 1.0265925e+02 4.30e-01 9.80e-01 -3.8 9.79e+01 -4.8 1.17e-01 1.89e-02h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 190 1.0250405e+02 3.27e-01 1.05e+00 -3.8 1.17e+02 -4.9 9.79e-01 2.56e-01h 1
 191 1.0262844e+02 1.57e-01 5.15e-01 -3.8 2.27e+01 -4.4 1.00e+00 5.11e-01h 1
 192 1.0257558e+02 1.28e-01 3.75e-01 -3.8 5.07e+01 -4.9 1.00e+00 4.13e-01h 1
 193 1.0242797e+02 3.78e-01 1.61e+00 -3.8 8.23e+01 -5.4 5.38e-01 7.00e-01h 1
 194 1.0238268e+02 3.65e-01 1.56e+00 -3.8 1.54e+02 -5.9 5.51e-02 4.30e-02h 1
 195 1.0232307e+02 3.29e-01 1.40e+00 -3.8 1.04e+02 -6.4 1.00e+00 1.18e-01h 1
 196 1.0227044e+02 2.99e-01 1.26e+00 -3.8 1.17e+02 -6.8 2.42e-01 1.22e-01h 1
 197 1.0223323e+02 2.99e-01 1.25e+00 -3.8 6.70e+02 -6.4 7.21e-02 1.45e-02h 1
 198 1.0223389e+02 2.98e-01 1.25e+00 -3.8 9.18e+00 -5.1 9.94e-01 3.51e-03h 1
 199 1.0247820e+02 2.82e-01 1.15e+00 -3.8 1.47e+02 -4.7 1.21e-01 7.35e-02h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 200 1.0252776e+02 9.44e-03 5.36e-02 -3.8 9.09e+00 -4.2 1.00e+00 9.84e-01h 1
 201 1.0247606e+02 3.07e-03 2.00e-02 -3.8 2.58e+00 -4.7 1.00e+00 1.00e+00h 1
 202 1.0245546e+02 3.88e-03 1.35e-02 -3.8 5.83e+00 -5.2 8.88e-01 1.00e+00h 1
 203 1.0244869e+02 8.45e-03 4.28e-02 -3.8 9.14e+00 -5.7 1.00e+00 1.00e+00h 1
 204 1.0244901e+02 4.38e-03 1.86e-02 -3.8 6.99e+00 -5.2 1.00e+00 1.00e+00h 1
 205 1.0244856e+02 4.37e-03 1.80e-01 -3.8 5.82e+01 -4.8 2.17e-01 1.35e-02h 7
 206 1.0245247e+02 3.21e-03 1.01e-01 -3.8 4.59e+00 -4.4 1.00e+00 2.50e-01h 3
 207 1.0243578e+02 2.68e-04 2.87e-03 -3.8 1.20e+00 -4.0 1.00e+00 1.00e+00h 1
 208 1.0243534e+02 4.39e-03 5.71e-02 -3.8 9.09e+00 -4.4 8.53e-01 5.00e-01h 2
 209 1.0240901e+02 2.63e-03 2.17e-02 -3.8 3.56e+00 -4.0 1.00e+00 1.00e+00h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 210 1.0239110e+02 9.14e-03 7.21e-02 -3.8 5.37e+01 -4.5 4.81e-02 9.83e-02h 4
 211 1.0231924e+02 5.95e-03 8.47e-02 -3.8 6.88e+00 -4.1 4.24e-01 1.00e+00h 1
 212 1.0222353e+02 3.62e-02 2.32e-01 -3.8 2.28e+01 -4.5 7.09e-02 1.00e+00h 1
 213 1.0217568e+02 3.68e-02 1.71e-01 -3.8 7.26e+01 -5.0 5.37e-01 1.19e-01h 1
 214 1.0207708e+02 2.31e-01 5.60e-01 -3.8 1.34e+03 -5.5 3.61e-04 3.30e-02f 1
 215 1.0174246e+02 7.39e-01 1.37e+00 -3.8 1.41e+02 -5.1 3.95e-01 5.53e-01h 1
 216 1.0137982e+02 4.49e-01 7.90e-01 -3.8 1.03e+02 -5.5 5.36e-01 5.09e-01h 1
 217 1.0136098e+02 4.26e-01 7.48e-01 -3.8 1.07e+02 -6.0 2.89e-01 5.59e-02h 1
 218 1.0129866e+02 3.66e-01 5.82e-01 -3.8 1.17e+02 -6.5 4.65e-01 2.82e-01h 1
 219 1.0135890e+02 1.87e-01 4.62e-01 -3.8 5.79e+01 -7.0 5.19e-01 6.46e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 220 1.0138908e+02 1.77e-01 4.85e-01 -3.8 6.76e+01 -7.4 5.66e-01 4.03e-01h 1
 221 1.0149101e+02 1.92e-02 3.98e-02 -3.8 1.43e+01 -7.9 1.00e+00 1.00e+00h 1
 222 1.0150628e+02 8.17e-03 1.90e-02 -3.8 8.62e+00 -8.4 1.00e+00 1.00e+00h 1
 223 1.0150236e+02 1.34e-05 5.03e-05 -3.8 5.07e-01 -8.9 1.00e+00 1.00e+00h 1
 224 1.0149787e+02 1.93e-04 4.01e-04 -5.7 1.25e+00 -9.4 9.88e-01 9.96e-01h 1
 225 1.0149774e+02 4.36e-06 9.54e-06 -5.7 1.80e-01 -9.8 1.00e+00 1.00e+00h 1
 226 1.0149768e+02 2.97e-07 5.92e-07 -8.6 4.85e-02 -10.3 9.99e-01 1.00e+00h 1
 227 1.0149768e+02 1.27e-10 2.47e-10 -8.6 9.97e-04 -10.8 1.00e+00 1.00e+00h 1

Number of Iterations....: 227

 (scaled) (unscaled)
Objective...............: 1.0149767957695215e+02 1.0149767957695215e+02
Dual infeasibility......: 2.4670754328326439e-10 2.4670754328326439e-10
Constraint violation....: 1.2653078584889954e-10 1.2653078584889954e-10
Complementarity.........: 2.5715300299692318e-09 2.5715300299692318e-09
Overall NLP error.......: 2.5715300299692318e-09 2.5715300299692318e-09

Number of objective function evaluations = 248
Number of objective gradient evaluations = 228
Number of equality constraint evaluations = 248
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 228
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 227
Total CPU secs in IPOPT (w/o function evaluations) = 3.739
Total CPU secs in NLP function evaluations = 0.239

EXIT: Optimal Solution Found.
 S : t_proc (avg) t_wall (avg) n_eval
 nlp_f | 6.86ms (27.66us) 6.94ms (28.00us) 248
 nlp_g | 41.08ms (165.66us) 41.15ms (165.92us) 248
 nlp_grad | 531.00us (531.00us) 531.00us (531.00us) 1
 nlp_grad_f | 14.41ms (62.92us) 14.44ms (63.07us) 229
 nlp_hess_l | 89.71ms (395.21us) 89.86ms (395.87us) 227
 nlp_jac_g | 75.52ms (329.77us) 75.66ms (330.41us) 229
 total | 4.11 s (4.11 s) 4.11 s (4.11 s) 1

The first optimization will take rather long (4 seconds) but in the end we get:

EXIT: Optimal Solution Found.

which tells us that we found an optimal solution. Note that follow-up optimizations take around 100 ms due to warmstarting.

We can visualize the open-loop prediction with:

[27]:

line1, line2 = pendulum_bars(x0)
bar1[0].set_data(line1[0],line1[1])
bar2[0].set_data(line2[0],line2[1])
mpc_graphics.plot_predictions()
mpc_graphics.reset_axes()

fig

[27]:

[image: ../_images/example_gallery_DIP_57_0.png]

The open-loop prediction looks perfectly fine! We see that within the horizon the potential energy settles on a plateau greater than zero, while the kinetic energy becomes zero. This indicates our desired up-up position. Both angles seem to reach \(2\pi\).

Run closed-loop

The closed-loop system is now simulated for 100 steps (and the ouput of the optimizer is suppressed):

[30]:

%%capture
Quickly reset the history of the MPC data object.
mpc.reset_history()

n_steps = 100
for k in range(n_steps):
 u0 = mpc.make_step(x0)
 y_next = simulator.make_step(u0)
 x0 = estimator.make_step(y_next)

Results

The next cell converts the results of the closed-loop MPC simulation into a gif (might take a few minutes):

[31]:

from matplotlib.animation import FuncAnimation, FFMpegWriter, ImageMagickWriter

The function describing the gif:
x_arr = mpc.data['_x']
def update(t_ind):
 line1, line2 = pendulum_bars(x_arr[t_ind])
 bar1[0].set_data(line1[0],line1[1])
 bar2[0].set_data(line2[0],line2[1])
 mpc_graphics.plot_results(t_ind)
 mpc_graphics.plot_predictions(t_ind)
 mpc_graphics.reset_axes()

anim = FuncAnimation(fig, update, frames=n_steps, repeat=False)
gif_writer = ImageMagickWriter(fps=20)
anim.save('anim_dip.gif', writer=gif_writer)

The result is shown below, where solid lines are the recorded trajectories and dashed lines are the predictions of the scenarios:

[image: animdip]

Controller with obstacle avoidance

To make the example even more interesting it is possible to add obstacles and include a set-point tracking task, where the pendulum must be errect at a desired location.

Please note that the animation below now shows the pendulum position (of the cart) as well as the desired setpoint instead of the angles.

[image: animdipobs]

The code to create this animation is included in the do-mpc example files and is just an extension of the example shown above.

The necessary changes include the detection of obstacle intersection and an adapted objective function that includes the set-point tracking for the position.

 Efficient data generation and handling with do-mpc

Efficient data generation and handling with do-mpc

This notebook was used in our video tutorial on data generation and handling with do-mpc [https://www.youtube.com/watch?v=3ELyErkYPhE].

We start by importing basic modules and do-mpc.

[1]:

import numpy as np
import sys
from casadi import *
import os
import time

Add do_mpc to path. This is not necessary if it was installed via pip
sys.path.append('../../../')

Import do_mpc package:
import do_mpc

import matplotlib.pyplot as plt

import pandas as pd

Toy example

Step 1: Create the sampling_plan with the SamplingPlanner.

[image: 095c3c4bd33c4a67bd1557895fe402c3]

The planner is initiated and we set some (optional) parameters.

[2]:

sp = do_mpc.sampling.SamplingPlanner()
sp.set_param(overwrite = True)
This generates the directory, if it does not exist already.
sp.data_dir = './sampling_test/'

We then introduce new variables to the SamplingPlanner which will later jointly define a sampling case. Think of header rows in a table (see figure above).

These variables can themselves be sampled from a generating function or we add user defined cases one by one. If we want to sample variables to define the sampling case, we need to pass a sample generating function as shown below:

[3]:

sp.set_sampling_var('alpha', np.random.randn)
sp.set_sampling_var('beta', lambda: np.random.randint(0,5))

In this example we have two variables alpha and beta. We have:

\[\alpha \sim \mathcal{N}(\mu,\sigma)\]

and

\[\beta\sim \mathcal{U}([0,5])\]

Having defined generating functions for all of our variables, we can now generate a sampling plan with an arbitrary amount of cases:

SamplingPlanner.gen_sampling_plan(n_samples)

[4]:

plan = sp.gen_sampling_plan(n_samples=10)

We can inspect the plan conveniently by converting it to a pandas DataFrame. Natively, the plan is a list of dictionaries.

[5]:

pd.DataFrame(plan)

[5]:

 Python Module Index

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 do_mpc	

 	
 	
 do_mpc.controller	

 	
 	
 do_mpc.data	

 	
 	
 do_mpc.estimator	

 	
 	
 do_mpc.graphics	

 	
 	
 do_mpc.model	

 	
 	
 do_mpc.optimizer	

 	
 	
 do_mpc.sampling.datahandler	

 	
 	
 do_mpc.sampling.sampler	

 	
 	
 do_mpc.sampling.samplingplanner	

 	
 	
 do_mpc.simulator	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	
 	__getitem__() (do_mpc.data.Data method)

 	(do_mpc.data.MPCData method)

 	(do_mpc.model.Model method)

A

 	
 	add_line() (in module do_mpc.graphics.Graphics)

 	add_sampling_case() (in module do_mpc.sampling.samplingplanner.SamplingPlanner)

 	
 	animate() (in module do_mpc.graphics)

 	aux (do_mpc.model.Model attribute)

B

 	
 	bounds (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.MHE attribute)

 	(do_mpc.optimizer.Optimizer attribute)

C

 	
 	clear() (in module do_mpc.graphics.Graphics)

 	create_nlp() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.optimizer.Optimizer)

D

 	
 	Data (class in do_mpc.data)

 	data_dir (do_mpc.sampling.datahandler.DataHandler attribute)

 	(do_mpc.sampling.sampler.Sampler attribute)

 	(do_mpc.sampling.samplingplanner.SamplingPlanner attribute)

 	DataHandler (class in do_mpc.sampling.datahandler)

 	default_plot() (in module do_mpc.graphics)

 	do_mpc.controller (module)

 	do_mpc.data (module), [1]

 	
 	do_mpc.estimator (module)

 	do_mpc.graphics (module), [1]

 	do_mpc.model (module)

 	do_mpc.optimizer (module)

 	do_mpc.sampling.datahandler (module)

 	do_mpc.sampling.sampler (module)

 	do_mpc.sampling.samplingplanner (module)

 	do_mpc.simulator (module)

E

 	
 	EKF (class in do_mpc.estimator)

 	Estimator (class in do_mpc.estimator)

 	
 	export() (in module do_mpc.data.Data)

 	(in module do_mpc.data.MPCData)

 	(in module do_mpc.sampling.samplingplanner.SamplingPlanner)

F

 	
 	filter() (in module do_mpc.sampling.datahandler.DataHandler)

G

 	
 	gen_sampling_plan() (in module do_mpc.sampling.samplingplanner.SamplingPlanner)

 	get_p_template() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.simulator.Simulator)

 	get_tvp_template() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.optimizer.Optimizer)

 	(in module do_mpc.simulator.Simulator)

 	
 	get_y_template() (in module do_mpc.estimator.MHE)

 	Graphics (class in do_mpc.graphics)

I

 	
 	init_storage() (in module do_mpc.data.Data)

 	(in module do_mpc.data.MPCData)

 	
 	IteratedVariables (class in do_mpc.model)

L

 	
 	load_results() (in module do_mpc.data)

M

 	
 	make_step() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.EKF)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.estimator.StateFeedback)

 	(in module do_mpc.simulator.Simulator)

 	
 	MHE (class in do_mpc.estimator)

 	Model (class in do_mpc.model)

 	MPC (class in do_mpc.controller)

 	MPCData (class in do_mpc.data)

N

 	
 	nlp_cons (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.MHE attribute)

 	(do_mpc.optimizer.Optimizer attribute)

 	nlp_cons_lb (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.MHE attribute)

 	(do_mpc.optimizer.Optimizer attribute)

 	
 	nlp_cons_ub (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.MHE attribute)

 	(do_mpc.optimizer.Optimizer attribute)

 	nlp_obj (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.MHE attribute)

 	(do_mpc.optimizer.Optimizer attribute)

O

 	
 	opt_p (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.MHE attribute)

 	opt_p_num (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.MHE attribute)

 	
 	opt_x (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.MHE attribute)

 	opt_x_num (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.MHE attribute)

 	Optimizer (class in do_mpc.optimizer)

P

 	
 	p (do_mpc.model.Model attribute)

 	p_est0 (do_mpc.estimator.MHE attribute)

 	plot_predictions() (in module do_mpc.graphics.Graphics)

 	plot_results() (in module do_mpc.graphics.Graphics)

 	
 	pred_lines (do_mpc.graphics.Graphics attribute)

 	prediction() (in module do_mpc.data.MPCData)

 	prepare_nlp() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.optimizer.Optimizer)

R

 	
 	reset_axes() (in module do_mpc.graphics.Graphics)

 	reset_history() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.EKF)

 	(in module do_mpc.estimator.Estimator)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.estimator.StateFeedback)

 	(in module do_mpc.optimizer.Optimizer)

 	(in module do_mpc.simulator.Simulator)

 	
 	reset_prop_cycle() (in module do_mpc.graphics.Graphics)

 	result_lines (do_mpc.graphics.Graphics attribute)

S

 	
 	sample_data() (in module do_mpc.sampling.sampler.Sampler)

 	sample_idx() (in module do_mpc.sampling.sampler.Sampler)

 	Sampler (class in do_mpc.sampling.sampler)

 	SamplingPlanner (class in do_mpc.sampling.samplingplanner)

 	save_results() (in module do_mpc.data)

 	scaling (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.MHE attribute)

 	(do_mpc.optimizer.Optimizer attribute)

 	set_alg() (in module do_mpc.model.Model)

 	set_default_objective() (in module do_mpc.estimator.MHE)

 	set_expression() (in module do_mpc.model.Model)

 	set_initial_guess() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.simulator.Simulator)

 	set_meas() (in module do_mpc.model.Model)

 	set_meta() (in module do_mpc.data.Data)

 	(in module do_mpc.data.MPCData)

 	set_nl_cons() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.optimizer.Optimizer)

 	set_objective() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.MHE)

 	set_p_fun() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.simulator.Simulator)

 	set_param() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.sampling.datahandler.DataHandler)

 	(in module do_mpc.sampling.sampler.Sampler)

 	(in module do_mpc.sampling.samplingplanner.SamplingPlanner)

 	(in module do_mpc.simulator.Simulator)

 	
 	set_post_processing() (in module do_mpc.sampling.datahandler.DataHandler)

 	set_rhs() (in module do_mpc.model.Model)

 	set_rterm() (in module do_mpc.controller.MPC)

 	set_sample_function() (in module do_mpc.sampling.sampler.Sampler)

 	set_sampling_var() (in module do_mpc.sampling.samplingplanner.SamplingPlanner)

 	set_tvp_fun() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.optimizer.Optimizer)

 	(in module do_mpc.simulator.Simulator)

 	set_uncertainty_values() (in module do_mpc.controller.MPC)

 	set_variable() (in module do_mpc.model.Model)

 	set_y_fun() (in module do_mpc.estimator.MHE)

 	setup() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.model.Model)

 	(in module do_mpc.simulator.Simulator)

 	simulate() (in module do_mpc.simulator.Simulator)

 	Simulator (class in do_mpc.simulator)

 	solve() (in module do_mpc.controller.MPC)

 	(in module do_mpc.estimator.MHE)

 	(in module do_mpc.optimizer.Optimizer)

 	StateFeedback (class in do_mpc.estimator)

T

 	
 	t0 (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.EKF attribute)

 	(do_mpc.estimator.Estimator attribute)

 	(do_mpc.estimator.MHE attribute)

 	(do_mpc.estimator.StateFeedback attribute)

 	(do_mpc.model.IteratedVariables attribute)

 	(do_mpc.simulator.Simulator attribute)

 	
 	terminal_bounds (do_mpc.controller.MPC attribute)

 	tvp (do_mpc.model.Model attribute)

U

 	
 	u (do_mpc.model.Model attribute)

 	u0 (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.EKF attribute)

 	(do_mpc.estimator.Estimator attribute)

 	(do_mpc.estimator.MHE attribute)

 	(do_mpc.estimator.StateFeedback attribute)

 	(do_mpc.model.IteratedVariables attribute)

 	(do_mpc.simulator.Simulator attribute)

 	
 	update() (in module do_mpc.data.Data)

 	(in module do_mpc.data.MPCData)

V

 	
 	v (do_mpc.model.Model attribute)

W

 	
 	w (do_mpc.model.Model attribute)

X

 	
 	x (do_mpc.model.Model attribute)

 	x0 (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.EKF attribute)

 	(do_mpc.estimator.Estimator attribute)

 	(do_mpc.estimator.MHE attribute)

 	(do_mpc.estimator.StateFeedback attribute)

 	(do_mpc.model.IteratedVariables attribute)

 	(do_mpc.simulator.Simulator attribute)

Y

 	
 	y (do_mpc.model.Model attribute)

Z

 	
 	z (do_mpc.model.Model attribute)

 	z0 (do_mpc.controller.MPC attribute)

 	(do_mpc.estimator.EKF attribute)

 	(do_mpc.estimator.Estimator attribute)

 	(do_mpc.estimator.MHE attribute)

 	(do_mpc.estimator.StateFeedback attribute)

 	(do_mpc.model.IteratedVariables attribute)

 	(do_mpc.simulator.Simulator attribute)

 Graphics

Graphics

Animations

_guide: https://blog.bigbinary.com/2018/09/12/configuring-memory-allocation-in-imagemagick.html

_images/mhe_example_90_0.png
mass inel

0.00020

0.00015

0.00010

0.00005

0.00000

s True
—— Estim.

time [s]

_images/mhe_example_78_0.png
0.00040

True

0.00035 .
—— Estim.

0.00030
0.00025
0.00020

@
£
@
@
]
€

0.00015

0.00010

time [s]

_images/mhe_example_88_0.png
Sim.
1
2
e 3
MHE
— 1
= 2
— 3

a6 o s o
! D

[ped] uonisod ajbue [s/pes] Aydojan
Jejnbue

- o o
I

[ped] ajbue Jojow

time [s]

_images/triple_mass_spring.png

_images/oscillating_masses.png
251

_images/poly_reactor_parameters.png
Parameter

R

Cpw

Cps

CpF

CpR

kws

Tr

A

mMy,kw
ms
mawrt
MAWTKW
v kw
MAWT,kw
Mawr

AHg
ko
ku2
kun
Ww,F
WAh,F

kas
kps

Description

Gas constant

Specific heat capacity of the coolant
Specific heat capacity of the steel
Specific heat capacity of the feed
Specific heat capacity of the reactor contents
Heat transfer coeff. water-steel
Feed temperature

Heat exchange surface of the jacket
Mass of coolant in the jacket

Mass of reactor steel

Mass of the product in the EHE
Mass of the coolant in the EHE
Coolant flow of the jacket

Coolant flow of the EHE

Product flow to the EHE

Activation energy

Specific reaction enthalpy

Specific reaction rate

Reaction parameter 1

Reaction parameter 2

Mass fraction of water in the feed
Mass fraction of A in the feed

Heat transfer coeff. monomer-steel
Heat transfer coeff. product-steel
Experimental coefficient

Value

8.314
4.2
0.47

5.0
4800

25

65

5000
39,000
200
1000
300,000
100,000
20,000
8500
950

7

32

4

0.333
0.667
1000
100
3,600,000

Units

k] kmol-1K-1
K kg1 K-1

K kg1 K-1

K kg1 K-1

K kg1 K-1
Wm2K!
°C

m2

kg

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/do_mpc_flow_sheet.png
"do mpc" configuration model = do mpc.model ('continuous')
[configure ...]
model.setup ()

optimizer = do mpc.optimizer (model) simulator = do mpc.simulator (model) estimator = do mpc.estimator (model)
[configure ...] [configure ...] [configure ...]
optimizer.setup () simulator.setup () estimator.setup ()

_static/ajax-loader.gif

_static/dompc_var_02_rtd_blue.png
robust optimal
control toolbox

_static/down.png

_static/down-pressed.png

_static/triple_mass_spring.png

_static/plus.png

_static/temp/do-mpc_developer_conference_2021_flyer.png
A0l developer conference

More information on do-mpc.com and pas.bci.tu-dortmund.de

13.09. - 15.09.21

I Public talks & feature demonstrations

I Hackathon

I Future roadmap presentation & discussion

Presented by

2 process automation
systems

technische universitat
dortmund

_static/up-pressed.png

_static/up.png

_static/minus.png

_static/file.png

_images/a8f4098802cb7be4aa206f47d94cbadac56b9cd8.png
1 - 1
310 = %lfs, + 3l = B, +E(okl + 3 el)

S.L Xk

(X, Uiy Zke» Py Prve) + Wi
Vi = h(Xic, i, Zks P, D) + Ok, ¢k =0,
&(Xk, Uiy Zies P> Prvic) < 0

_images/anim.gif
angle position [rad]

motor angle [rad]

b=t

0.00

0.25

0.50

0.75

1.00
time [s]

1.50

1.75

_images/anim_CSTR.gif
Q [kw] ATIK] TIK] c [mol/l]

Flow [I/h]

0.8

0.6

140

135

130

—2000

—4000

15

10

time [h]

nav.xhtml

 Table of Contents

 		
 Model predictive control python toolbox

 		
 Getting started: MPC

 		
 Example system

 		
 Creating the model

 		
 Model variables

 		
 Query variables

 		
 Model parameters

 		
 Right-hand-side equation

 		
 Configuring the MPC controller

 		
 Optimizer parameters

 		
 Objective function

 		
 Constraints

 		
 Scaling

 		
 Uncertain Parameters

 		
 Setup

 		
 Configuring the Simulator

 		
 Simulator parameters

 		
 Uncertain parameters

 		
 Setup

 		
 Creating the control loop

 		
 Setting up the Graphic

 		
 Running the simulator

 		
 Running the optimizer

 		
 Changing the line appearance

 		
 Running the control loop

 		
 Data processing

 		
 Saving and retrieving results

 		
 Working with data objects

 		
 Animating results

 		
 Getting started: MHE

 		
 Creating the model

 		
 Model variables

 		
 Model measurements

 		
 Model parameters

 		
 Right-hand-side equation

 		
 Configuring the moving horizon estimator

 		
 MHE parameters:

 		
 Objective function

 		
 Fixed parameters

 		
 Bounds

 		
 Setup

 		
 Configuring the Simulator

 		
 Simulator parameters

 		
 Parameters

 		
 Setup

 		
 Creating the loop

 		
 Setting up the Graphic

 		
 Running the loop

 		
 MHE Advantages

 		
 Orthogonal collocation on finite elements

 		
 Lagrange polynomials for ODEs

 		
 Deriving the integration equations

 		
 Collocation constraints

 		
 Continuity constraints

 		
 Solving the ODE problem

 		
 Collocation with orthogonal polynomials

 		
 Bibliography

 		
 Basics of model predictive control

 		
 System model

 		
 Model predictive control problem

 		
 Robust multi-stage NMPC

 		
 General description

 		
 Robust horizon

 		
 Mathematical formulation

 		
 Basics of moving horizon estimation

 		
 System model

 		
 Moving horizon estimation problem

 		
 Concept

 		
 Mathematical formulation

 		
 License

 		
 Installation

 		
 Requirements

 		
 Option 1: PIP

 		
 Option 2: Clone from Github

 		
 HSL linear solver for IPOPT

 		
 Option 1: Pre-compiled binaries

 		
 Option 2: Compile from source

 		
 Credit

 		
 Structuring your project

 		
 template_model

 		
 template_mpc

 		
 template_simulator

 		
 template_estimator

 		
 main script

 		
 Initial state & guess

 		
 Graphics configuration

 		
 closed-loop

 		
 FAQ

 		
 Time-varying parameters

 		
 Implementation

 		
 Feasibility issues

 		
 Is the initial state feasible?

 		
 Which constraints are violated?

 		
 Use soft-constraints.

 		
 API Reference

 		
 model

 		
 IteratedVariables

 		
 Model

 		
 simulator

 		
 Simulator

 		
 optimizer

 		
 Optimizer

 		
 controller

 		
 MPC

 		
 estimator

 		
 EKF

 		
 Estimator

 		
 MHE

 		
 StateFeedback

 		
 data

 		
 Data

 		
 MPCData

 		
 load_results

 		
 save_results

 		
 graphics

 		
 Graphics

 		
 animate

 		
 default_plot

 		
 samplingplanner

 		
 SamplingPlanner

 		
 sampler

 		
 Sampler

 		
 datahandler

 		
 DataHandler

 		
 Release notes

 		
 v4.4.0

 		
 Major changes

 		
 Minor changes

 		
 v4.3.5

 		
 Minor fixes

 		
 v4.3.4

 		
 Minor fixes

 		
 v4.3.3

 		
 Major changes

 		
 Minor changes

 		
 Documentation

 		
 Example files

 		
 v4.3.2.

 		
 Major fixes

 		
 v4.3.1

 		
 v4.3.0

 		
 Major changes

 		
 Minor changes

 		
 Example files

 		
 v4.2.5

 		
 Major changes

 		
 Backend

 		
 v4.2.0

 		
 Major changes

 		
 Minor changes

 		
 Bug fixes

 		
 v4.1.1

 		
 Major changes

 		
 Documentation

 		
 do-mpc v4.1.0

 		
 Major changes

 		
 Minor changes

 		
 Documentation

 		
 Example files

 		
 do-mpc v4.0.0

 		
 Major changes

 		
 Documentation

 		
 Minor changes

 		
 Example files

 		
 do-mpc v4.0.0-beta3

 		
 Major changes

 		
 Example files

 		
 do-mpc v4.0.0-beta2

 		
 do-mpc v4.0.0-beta1

 		
 Major changes

 		
 Bug fixes

 		
 Other changes

 		
 Example files

 		
 do-mpc v4.0.0-beta

 		
 Example files

 		
 do-mpc v3.0.0

 		
 Main modifications

 		
 do-mpc v2.0.0

 		
 do-mpc version 1.0.0

 		
 Batch Bioreactor

 		
 Model

 		
 States and control inputs

 		
 ODE and parameters

 		
 Controller

 		
 Objective

 		
 Constraints

 		
 Uncertain values

 		
 Estimator

 		
 Simulator

 		
 Realizations of uncertain parameters

 		
 Closed-loop simulation

 		
 Prepare visualization

 		
 Run closed-loop

 		
 Results

 		
 Continuous stirred tank reactor (CSTR)

 		
 Model

 		
 States and control inputs

 		
 ODE and parameters

 		
 Controller

 		
 Objective

 		
 Constraints

 		
 Uncertain values

 		
 Estimator

 		
 Simulator

 		
 Realizations of uncertain parameters

 		
 Closed-loop simulation

 		
 Animating the results

 		
 Industrial polymerization reactor

 		
 Model

 		
 System description

 		
 Implementation

 		
 Controller

 		
 Objective

 		
 Constraints

 		
 Scaling

 		
 Uncertain values

 		
 Estimator

 		
 Simulator

 		
 Realizations of uncertain parameters

 		
 Closed-loop simulation

 		
 Animating the results

 		
 Oscillating masses

 		
 Model

 		
 States and control inputs

 		
 Controller

 		
 Objective

 		
 Constraints

 		
 Estimator

 		
 Simulator

 		
 Closed-loop simulation

 		
 Displaying the results

 		
 Double inverted pendulum

 		
 Model

 		
 Parameters

 		
 Euler-Lagrangian equations

 		
 Differential algebraic equation (DAE)

 		
 Energy equations

 		
 Controller

 		
 Objective

 		
 Constraints

 		
 Estimator

 		
 Simulator

 		
 Closed-loop simulation

 		
 Prepare visualization

 		
 Run open-loop

 		
 Run closed-loop

 		
 Results

 		
 Controller with obstacle avoidance

 		
 Efficient data generation and handling with do-mpc

 		
 Toy example

 		
