filter

Class method.

do_mpc.sampling.datahandler.DataHandler.filter(self, input_filter=None, output_filter=None)

Filter data from the DataHandler. Filters can be applied to inputs or to results that were obtained with the post-processing functions. Filtering returns only a subset from the created samples based on arbitrary conditions.

Example:

sp = do_mpc.sampling.SamplingPlanner()

# SamplingPlanner with two variables alpha and beta:
sp.set_sampling_var('alpha', np.random.randn)
sp.set_sampling_var('beta', lambda: np.random.randint(0,5))
plan = sp.gen_sampling_plan()

...

dh = do_mpc.sampling.DataHandler(plan)
dh.set_post_processing('square', lambda res: res**2)

# Return all samples with alpha < 0 and beta > 2
dh.filter(input_filter = lambda alpha, beta: alpha < 0 and beta > 2)
# Return all samples for which the computed value square < 5
dh.filter(output_filter = lambda square: square < 5)
Parameters:

filter_fun – Function to filter the data.

Raises:
  • assertion – No post processing function is set
  • assertion – filter_fun must be either Function of BuiltinFunction_or_Method
Returns:

Returns the post processed samples that satisfy the filter

Return type:

dict

This page is auto-generated. Page source is not available on Github.